#include "lite_build_config.h" #if LITE_BUILD_WITH_MGE #include "../src/mge/common.h" #include "../src/mge/network_impl.h" #include "../src/misc.h" #include "lite/tensor.h" #include #include #include using namespace lite; TEST(TestTensor, Basic) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1(LiteDeviceType::LITE_CPU); Tensor tensor2(LiteDeviceType::LITE_CPU, layout); Tensor tensor3(LiteDeviceType::LITE_CPU, layout); //! mge tensor has created ASSERT_TRUE(TensorHelper::implement(&tensor1)); ASSERT_TRUE(TensorHelper::implement(&tensor2)); ASSERT_TRUE(TensorHelper::implement(&tensor3)); //! check member ASSERT_EQ(tensor2.get_device_type(), LiteDeviceType::LITE_CPU); ASSERT_EQ(tensor2.get_layout(), layout); ASSERT_EQ(tensor3.get_layout(), layout); //! check the real tensor ASSERT_EQ(tensor2.get_tensor_total_size_in_byte(), 1 * 3 * 224 * 224 * 4); ASSERT_EQ(tensor3.get_tensor_total_size_in_byte(), 1 * 3 * 224 * 224 * 4); ASSERT_TRUE(TensorHelper::implement(&tensor1) ->cast_final_safe() .host_tensor()); ASSERT_FALSE(TensorHelper::implement(&tensor1) ->cast_final_safe() .dev_tensor()); ASSERT_FALSE(TensorHelper::implement(&tensor1) ->cast_final_safe() .dev_tensor()); ASSERT_TRUE(TensorHelper::implement(&tensor1) ->cast_final_safe() .host_tensor()); } TEST(TestTensor, SetLayoutReAlloc) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1; Tensor tensor2(LiteDeviceType::LITE_CPU, layout); Tensor tensor3(LiteDeviceType::LITE_CPU, layout); auto old_ptr2 = tensor2.get_memory_ptr(); auto old_ptr3 = tensor3.get_memory_ptr(); //! layout set through Layout layout1{{1, 3, 100, 100}, 4, LiteDataType::LITE_INT8}; tensor1.set_layout(layout1); tensor2.set_layout(layout1); tensor3.set_layout(layout1); ASSERT_EQ(tensor2.get_tensor_total_size_in_byte(), 1 * 3 * 100 * 100); ASSERT_EQ(tensor3.get_tensor_total_size_in_byte(), 1 * 3 * 100 * 100); auto layout2 = TensorHelper::implement(&tensor2) ->cast_final_safe() .host_tensor() ->layout(); auto layout3 = TensorHelper::implement(&tensor3) ->cast_final_safe() .host_tensor() ->layout(); ASSERT_EQ(to_lite_layout(layout2), layout1); ASSERT_EQ(to_lite_layout(layout3), layout1); auto new_ptr2 = tensor2.get_memory_ptr(); auto new_ptr3 = tensor3.get_memory_ptr(); ASSERT_EQ(old_ptr2, new_ptr2); ASSERT_EQ(old_ptr3, new_ptr3); } TEST(TestTensor, Reset) { Layout layout{{3, 20}, 2, LiteDataType::LITE_FLOAT}; Tensor tensor1; Tensor tensor2(LiteDeviceType::LITE_CPU, layout); Tensor tensor3(LiteDeviceType::LITE_CPU, layout); auto old_ptr2 = tensor2.get_memory_ptr(); auto old_ptr3 = tensor3.get_memory_ptr(); //! make sure memory is allocted ASSERT_NO_THROW(memcpy(old_ptr2, old_ptr3, 3 * 20 * 2)); std::shared_ptr new_ptr2( new float[3 * 20], [](float* ptr) { delete[] ptr; }); std::shared_ptr new_ptr3( new float[3 * 20], [](float* ptr) { delete[] ptr; }); tensor1.reset(new_ptr2.get(), layout); tensor2.reset(new_ptr2.get(), 3 * 20 * 4); tensor3.reset(new_ptr3.get(), 3 * 20 * 4); //! After reset the original mem is freed /*ASSERT_EXIT((memcpy(old_ptr2, old_ptr3, 3 * 20 * 2), exit(0)), ::testing::KilledBySignal(SIGSEGV), ".*");*/ ASSERT_EQ(tensor2.get_memory_ptr(), new_ptr2.get()); ASSERT_EQ(tensor3.get_memory_ptr(), new_ptr3.get()); ASSERT_NO_THROW(memcpy(new_ptr2.get(), new_ptr3.get(), 3 * 20 * 2)); Layout layout1{{6, 20}, 2, LiteDataType::LITE_FLOAT}; std::shared_ptr ptr2(new float[6 * 20], [](float* ptr) { delete[] ptr; }); std::shared_ptr ptr3(new float[6 * 20], [](float* ptr) { delete[] ptr; }); tensor2.reset(ptr2.get(), layout1); tensor3.reset(ptr3.get(), layout1); //! memory is not freed by Tensor reset ASSERT_NO_THROW(memcpy(new_ptr2.get(), new_ptr3.get(), 3 * 20 * 2)); auto host_layout2 = TensorHelper::implement(&tensor2) ->cast_final_safe() .host_tensor() ->layout(); auto host_layout3 = TensorHelper::implement(&tensor3) ->cast_final_safe() .host_tensor() ->layout(); ASSERT_EQ(to_lite_layout(host_layout2), layout1); ASSERT_EQ(to_lite_layout(host_layout3), layout1); } TEST(TestTensor, CrossCNCopy) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1(LiteDeviceType::LITE_CPU); Tensor tensor2(LiteDeviceType::LITE_CPU, layout); Tensor tensor3(LiteDeviceType::LITE_CPU, layout); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); auto old_ptr2 = tensor2.get_memory_ptr(); auto old_ptr3 = tensor3.get_memory_ptr(); //! test source tenor is empty ASSERT_THROW(tensor2.copy_from(tensor1), std::exception); tensor1.copy_from(tensor2); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); ASSERT_EQ(tensor2.get_memory_ptr(), old_ptr2); ASSERT_EQ(tensor3.get_memory_ptr(), old_ptr3); } TEST(TestTensor, SharedTensorMemory) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1(LiteDeviceType::LITE_CPU); { Tensor tensor2(LiteDeviceType::LITE_CPU, layout); tensor1.share_memory_with(tensor2); auto ptr1 = tensor1.get_memory_ptr(); auto ptr2 = tensor2.get_memory_ptr(); ASSERT_EQ(ptr1, ptr2); } // check after tensor2 destroy, tensor1 can also visit auto ptr1 = static_cast(tensor1.get_memory_ptr()); size_t length = tensor1.get_tensor_total_size_in_byte() / tensor1.get_layout().get_elem_size(); for (size_t i = 0; i < length; i++) { ptr1[i] = i; } } TEST(TestTensor, Reshape) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor2(LiteDeviceType::LITE_CPU, layout); auto ptr = tensor2.get_memory_ptr(); //! test wrong case ASSERT_THROW(tensor2.reshape({-1, -1, 3 * 224 * 224}), std::exception); ASSERT_THROW(tensor2.reshape({-1, 3, 3 * 224 * 224}), std::exception); ASSERT_THROW(tensor2.reshape({1, 3, 3 * 224 * 224}), std::exception); ASSERT_THROW(tensor2.reshape({3, 3, 3 * 224 * 224}), std::exception); tensor2.reshape({3 * 224 * 224}); ASSERT_EQ(tensor2.get_layout().ndim, 1); ASSERT_EQ(tensor2.get_layout().data_type, LiteDataType::LITE_FLOAT); ASSERT_EQ(tensor2.get_layout().shapes[0], 3 * 224 * 224); tensor2.reshape({-1, 224, 224}); ASSERT_EQ(tensor2.get_layout().ndim, 3); ASSERT_EQ(tensor2.get_layout().shapes[0], 3); ASSERT_EQ(tensor2.get_layout().shapes[1], 224); ASSERT_EQ(tensor2.get_memory_ptr(), ptr); } TEST(TestTensor, Slice) { Layout layout{{20, 20}, 2}; Tensor tensor2(LiteDeviceType::LITE_CPU, layout); auto ptr = tensor2.get_memory_ptr(); //! test source tenor is empty ASSERT_THROW(tensor2.slice({5, 10, 10}, {10, 15}), std::exception); ASSERT_THROW(tensor2.slice({5, 10}, {10, 15}, {5}), std::exception); ASSERT_THROW(tensor2.slice({5, 10}, {10, 15, 10}), std::exception); for (int i = 0; i < 20 * 20; i++) { *(static_cast(ptr) + i) = i; } auto check = [&](size_t start, size_t end, size_t step) { Tensor tensor3; tensor3.copy_from(*tensor2.slice({start, start}, {end, end}, {step, step})); float* new_ptr = static_cast(tensor3.get_memory_ptr()); for (size_t i = start; i < end; i += step) { for (size_t j = start; j < end; j += step) { ASSERT_EQ(float(i * 20 + j), *new_ptr); ++new_ptr; } } }; check(5, 10, 1); check(5, 11, 2); check(2, 18, 4); Tensor tensor3; tensor3.copy_from(*tensor2.slice({3}, {9}, {2})); float* new_ptr = static_cast(tensor3.get_memory_ptr()); for (size_t i = 3; i < 9; i += 2) { for (size_t j = 0; j < 20; j++) { ASSERT_EQ(float(i * 20 + j), *new_ptr); ++new_ptr; } } } TEST(TestTensor, SliceCopy) { Layout layout{{20, 20}, 2}; Tensor tensor(LiteDeviceType::LITE_CPU, layout); //! alloc memory auto ptr = static_cast(tensor.get_memory_ptr()); Layout layout_slice{{20, 10}, 2}; Tensor tensor0(LiteDeviceType::LITE_CPU, layout_slice); auto ptr0 = tensor0.get_memory_ptr(); for (int i = 0; i < 10 * 20; i++) { *(static_cast(ptr0) + i) = i; } Tensor tensor1(LiteDeviceType::LITE_CPU, layout_slice); auto ptr1 = tensor1.get_memory_ptr(); for (int i = 0; i < 10 * 20; i++) { *(static_cast(ptr1) + i) = i + 200; } auto slice0 = tensor.slice({0, 0}, {20, 10}); auto slice1 = tensor.slice({0, 10}, {20, 20}); slice0->copy_from(tensor0); slice1->copy_from(tensor1); ASSERT_FALSE(slice0->is_continue_memory()); ASSERT_FALSE(slice1->is_continue_memory()); for (size_t i = 0; i < 20; i++) { for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(i * 10 + j), *ptr); ++ptr; } for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(i * 10 + j + 200), *ptr); ++ptr; } } slice0->fill_zero(); Tensor tmp; tmp.copy_from(*slice0); float* tmp_ptr = static_cast(tmp.get_memory_ptr()); for (size_t i = 0; i < 20; i++) { for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(0), *tmp_ptr); ++tmp_ptr; } } } TEST(TestTensor, GetPtrOffset) { Layout layout{{20, 20}, 2}; Tensor tensor(LiteDeviceType::LITE_CPU, layout); //! alloc memory auto ptr = static_cast(tensor.get_memory_ptr()); auto ptr_offset = tensor.get_memory_ptr({10, 10}); ASSERT_EQ(ptr_offset, ptr + 10 * 20 + 10); auto slice0 = tensor.slice({0, 0}, {20, 10}); auto slice1 = tensor.slice({0, 10}, {20, 20}); ASSERT_FALSE(slice0->is_continue_memory()); ASSERT_FALSE(slice1->is_continue_memory()); auto ptr_offset_slice0 = slice0->get_memory_ptr({6, 5}); auto ptr_offset_slice1 = slice1->get_memory_ptr({2, 5}); ASSERT_EQ(ptr_offset_slice0, ptr + 6 * 20 + 5); ASSERT_EQ(ptr_offset_slice1, ptr + 2 * 20 + 10 + 5); } TEST(TestTensor, Concat) { Layout layout{{5, 5, 5}, 3}; std::vector tensors; for (int i = 0; i < 4; i++) { Tensor tensor(LiteDeviceType::LITE_CPU, layout); auto ptr = static_cast(tensor.get_memory_ptr()); for (int n = 0; n < 5 * 5 * 5; n++) { ptr[n] = i; } tensors.push_back(tensor); } auto check = [&](int dim) { auto new_tensor = TensorUtils::concat(tensors, dim); auto ptr = static_cast(new_tensor->get_memory_ptr()); size_t stride = std::pow(5, (3 - dim)); for (int i = 0; i < 4; i++) { for (size_t j = 0; j < stride; j++) { ASSERT_EQ(ptr[i * stride + j], i); } } }; check(0); check(1); check(2); } #if LITE_WITH_CUDA TEST(TestTensor, BasicDevice) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1(LiteDeviceType::LITE_CUDA, layout); Tensor tensor2(LiteDeviceType::LITE_CPU, layout); //! mge tensor has created ASSERT_TRUE(TensorHelper::implement(&tensor1)); ASSERT_TRUE(TensorHelper::implement(&tensor2)); //! check member ASSERT_EQ(tensor1.get_device_type(), LiteDeviceType::LITE_CUDA); ASSERT_EQ(tensor2.get_device_type(), LiteDeviceType::LITE_CPU); ASSERT_EQ(tensor2.get_layout(), layout); //! check the real tensor ASSERT_EQ(tensor1.get_tensor_total_size_in_byte(), 1 * 3 * 224 * 224 * 4); ASSERT_EQ(tensor2.get_tensor_total_size_in_byte(), 1 * 3 * 224 * 224 * 4); ASSERT_TRUE(TensorHelper::implement(&tensor2) ->cast_final_safe() .host_tensor()); ASSERT_FALSE(TensorHelper::implement(&tensor2) ->cast_final_safe() .dev_tensor()); ASSERT_TRUE(TensorHelper::implement(&tensor1) ->cast_final_safe() .dev_tensor()); ASSERT_FALSE(TensorHelper::implement(&tensor1) ->cast_final_safe() .host_tensor()); } TEST(TestTensor, SetLayoutReAllocDevice) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor2(LiteDeviceType::LITE_CUDA, layout); auto old_ptr2 = tensor2.get_memory_ptr(); //! layout set through Layout layout1{{1, 3, 100, 100}, 4, LiteDataType::LITE_INT8}; tensor2.set_layout(layout1); ASSERT_EQ(tensor2.get_tensor_total_size_in_byte(), 1 * 3 * 100 * 100); auto layout2 = TensorHelper::implement(&tensor2) ->cast_final_safe() .dev_tensor() ->layout(); ASSERT_EQ(to_lite_layout(layout2), layout1); auto new_ptr2 = tensor2.get_memory_ptr(); ASSERT_EQ(old_ptr2, new_ptr2); } TEST(TestTensor, CrossCNCopyDevice) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor0; Tensor tensor1(LiteDeviceType::LITE_CPU); Tensor tensor2(LiteDeviceType::LITE_CPU, layout); Tensor tensor3(LiteDeviceType::LITE_CUDA, layout); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); auto old_ptr2 = tensor2.get_memory_ptr(); auto old_ptr3 = tensor3.get_memory_ptr(); ASSERT_THROW(tensor3.copy_from(tensor1), std::exception); tensor1.copy_from(tensor3); tensor0.copy_from(tensor3); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); ASSERT_EQ(tensor2.get_memory_ptr(), old_ptr2); ASSERT_EQ(tensor3.get_memory_ptr(), old_ptr3); } TEST(TestTensor, PinnedHostMem) { Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor1(LiteDeviceType::LITE_CPU); bool is_pinned_host = true; Tensor tensor2(LiteDeviceType::LITE_CUDA, layout, is_pinned_host); Tensor tensor3(LiteDeviceType::LITE_CUDA, layout); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); ASSERT_EQ(tensor2.is_pinned_host(), true); ASSERT_EQ(tensor3.is_pinned_host(), false); auto old_ptr2 = tensor2.get_memory_ptr(); auto old_ptr3 = tensor3.get_memory_ptr(); //! test source tenor is empty ASSERT_THROW(tensor2.copy_from(tensor1), std::exception); tensor1.copy_from(tensor2); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); ASSERT_EQ(tensor2.get_memory_ptr(), old_ptr2); ASSERT_EQ(tensor3.get_memory_ptr(), old_ptr3); } TEST(TestTensor, DeviceId) { if (get_device_count(LITE_CUDA) <= 1) return; Layout layout{{1, 3, 224, 224}, 4}; Tensor tensor2(0, LiteDeviceType::LITE_CUDA, layout); Tensor tensor3(1, LiteDeviceType::LITE_CUDA, layout); tensor2.copy_from(tensor3); tensor3.copy_from(tensor2); Tensor tensor1; tensor1.copy_from(tensor2); tensor1.copy_from(tensor3); } TEST(TestTensor, SliceDevice) { Layout layout{{20, 20}, 2}; Tensor host_tensor0; Tensor dev_tensor0(LiteDeviceType::LITE_CUDA, layout); host_tensor0.copy_from(dev_tensor0); auto ptr = host_tensor0.get_memory_ptr(); for (int i = 0; i < 20 * 20; i++) { *(static_cast(ptr) + i) = i; } dev_tensor0.copy_from(host_tensor0); auto check = [&](size_t start, size_t end, size_t step) { Tensor host_tensor; host_tensor.copy_from( *dev_tensor0.slice({start, start}, {end, end}, {step, step})); float* new_ptr = static_cast(host_tensor.get_memory_ptr()); for (size_t i = start; i < end; i += step) { for (size_t j = start; j < end; j += step) { ASSERT_EQ(float(i * 20 + j), *new_ptr); ++new_ptr; } } }; check(5, 10, 1); check(5, 11, 2); check(2, 18, 4); } TEST(TestTensor, MemSetDevice) { Layout layout{{20, 20}, 2, LiteDataType::LITE_INT8}; Tensor host_tensor0(LiteDeviceType::LITE_CPU, layout); Tensor dev_tensor0(LiteDeviceType::LITE_CUDA, layout); auto check = [&](uint8_t val, const Tensor& tensor) { auto ptr = static_cast(tensor.get_memory_ptr()); for (int i = 0; i < 20 * 20; i++) { ASSERT_EQ(val, *(ptr + i)); } }; host_tensor0.fill_zero(); check(0, host_tensor0); Tensor host_tensor1; dev_tensor0.fill_zero(); host_tensor1.copy_from(dev_tensor0); check(0, host_tensor1); } TEST(TestTensor, DeviceSliceCopy) { Layout layout{{20, 20}, 2}; Tensor tensor(LiteDeviceType::LITE_CUDA, layout); //! alloc memory tensor.get_memory_ptr(); Layout layout_slice{{20, 10}, 2}; Tensor tensor0(LiteDeviceType::LITE_CPU, layout_slice); auto ptr0 = tensor0.get_memory_ptr(); for (int i = 0; i < 10 * 20; i++) { *(static_cast(ptr0) + i) = i; } Tensor tensor1(LiteDeviceType::LITE_CPU, layout_slice); auto ptr1 = tensor1.get_memory_ptr(); for (int i = 0; i < 10 * 20; i++) { *(static_cast(ptr1) + i) = i + 200; } auto slice0 = tensor.slice({0, 0}, {20, 10}); auto slice1 = tensor.slice({0, 10}, {20, 20}); slice0->copy_from(tensor0); slice1->copy_from(tensor1); ASSERT_FALSE(slice0->is_continue_memory()); ASSERT_FALSE(slice1->is_continue_memory()); Tensor host_tensor; host_tensor.copy_from(tensor); auto ptr = static_cast(host_tensor.get_memory_ptr()); for (size_t i = 0; i < 20; i++) { for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(i * 10 + j), *ptr); ++ptr; } for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(i * 10 + j + 200), *ptr); ++ptr; } } slice0->fill_zero(); Tensor tmp; tmp.copy_from(*slice0); float* tmp_ptr = static_cast(tmp.get_memory_ptr()); for (size_t i = 0; i < 20; i++) { for (size_t j = 0; j < 10; j++) { ASSERT_EQ(float(0), *tmp_ptr); ++tmp_ptr; } } } TEST(TestTensor, ConcatDevice) { Layout layout{{5, 5, 5}, 3}; std::vector tensors; for (int i = 0; i < 4; i++) { Tensor tensor(LiteDeviceType::LITE_CPU, layout); auto ptr = static_cast(tensor.get_memory_ptr()); for (int n = 0; n < 5 * 5 * 5; n++) { ptr[n] = i; } tensors.push_back(tensor); } auto check = [&](int dim) { auto new_tensor = TensorUtils::concat(tensors, dim, LiteDeviceType::LITE_CUDA, 0); Tensor tensor(LiteDeviceType::LITE_CPU); tensor.copy_from(*new_tensor); auto ptr = static_cast(tensor.get_memory_ptr()); size_t stride = std::pow(5, (3 - dim)); for (int i = 0; i < 4; i++) { for (size_t j = 0; j < stride; j++) { ASSERT_EQ(ptr[i * stride + j], i); } } ASSERT_EQ(new_tensor->get_device_type(), LiteDeviceType::LITE_CUDA); ASSERT_EQ(new_tensor->get_device_id(), 0); }; check(0); check(1); check(2); } TEST(TestTensor, CudaOutputDevice) { Layout layout{{1, 4}, 2}; bool is_pinned_host = true; Tensor tensor(LiteDeviceType::LITE_CUDA, layout, is_pinned_host); // If is_pinned_host is true, when calling update_from_implement(), the device type // should always be updated with // get_device_from_locator(m_host_tensor->comp_node().locator()). tensor.update_from_implement(); ASSERT_EQ(tensor.get_device_type(), LiteDeviceType::LITE_CUDA); } #endif #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}