/** * \file dnn/test/common/rng.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/common/rng.h" #include "test/common/random_state.h" #include "test/common/tensor.h" #include using namespace megdnn; using namespace test; /*! * \brief xorshift+ RNG, which is very fast * * see https://en.wikipedia.org/wiki/Xorshift#xorshift.2B */ class RNG::RNGxorshf { uint64_t s[2]; public: using result_type = uint64_t; #ifdef WIN32 static uint64_t min() { return 0; } static uint64_t max() { return std::numeric_limits::max(); } #else static constexpr uint64_t min() { return 0; } static constexpr uint64_t max() { return std::numeric_limits::max(); } #endif template explicit RNGxorshf(T &&gen) { s[0] = gen(); s[1] = gen(); } uint64_t operator() () { uint64_t x = s[0]; uint64_t const y = s[1]; s[0] = y; x ^= x << 23; // a s[1] = x ^ y ^ (x >> 17) ^ (y >> 26); // b, c return s[1] + y; } }; Float16PeriodicalRNG::Float16PeriodicalRNG() : m_offset(0) { for (size_t x = 0; x < (1u<<16); ++x) { size_t exponent = (x >> 10) & 0x1F; if (exponent == 0x1F) { // +inf, -inf, NaN continue; } union U { U(){} uint16_t i; dt_float16 f; } i2f; i2f.i = static_cast(x); m_sequence.push_back(i2f.f); } COMPAT_RANDOM(m_sequence.begin(), m_sequence.end()); } Float16PeriodicalRNG::Float16PeriodicalRNG(size_t range) : m_offset(0) { union U { U() {} uint16_t i; dt_float16 f; } i2f; size_t x = 0; i2f.i = static_cast(x); for (size_t i = 0; i < range; i++) { x += 1; i2f.i = static_cast(x); m_sequence.push_back(i2f.f); } x = 1u << 15; i2f.i = static_cast(x); for (size_t i = 0; i < range; i++) { x += 1; i2f.i = static_cast(x); m_sequence.push_back(i2f.f); } COMPAT_RANDOM(m_sequence.begin(), m_sequence.end()); } void Float16PeriodicalRNG::gen(const TensorND& tensor) { megdnn_assert(tensor.layout.dtype == dtype::Float16()); size_t nr_elems = tensor.layout.span().dist_elem(); auto offset = tensor.layout.span().low_elem; for (size_t i = 0; i < nr_elems; ++i) { tensor.ptr()[offset+i] = get_single_val(); } } dt_float16 Float16PeriodicalRNG::get_single_val() { if (m_offset >= m_sequence.size()) { m_offset = 0; } return m_sequence[m_offset++]; } void IIDRNG::gen(const TensorND& tensor) { if (tensor.layout.dtype == dtype::Float32() && has_fast_float32() && tensor.layout.is_physical_contiguous()) { fill_fast_float32(tensor.ptr(), tensor.layout.total_nr_elems()); return; } auto offset = tensor.layout.span().low_elem; auto nr_elems = tensor.layout.span().dist_elem(); #define cb(DType) \ if (tensor.layout.dtype == DType()) { \ using ctype = typename DTypeTrait::ctype; \ auto ptr = tensor.ptr(); \ for (size_t i = 0; i < nr_elems; ++i) { \ ptr[offset + i] = static_cast(gen_single_val()); \ } \ return; \ } MEGDNN_FOREACH_COMPUTING_DTYPE(cb); #undef cb #define cb(DType) \ if (tensor.layout.dtype.enumv() == DTypeTrait::enumv) { \ using ctype = typename DTypeTrait::ctype; \ auto ptr = tensor.ptr(); \ if (output_is_float()) { \ for (size_t i = 0; i < nr_elems; ++i) { \ ptr[offset + i] = tensor.layout.dtype.param().quantize( \ static_cast(gen_single_val())); \ } \ } else { \ for (size_t i = 0; i < nr_elems; ++i) { \ ptr[offset + i] = static_cast(gen_single_val()); \ } \ } \ return; \ } MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) //! In order to avoid an unnecessary increase in binary size, we just //! use QuantizedS16 dtype in winograd_filter_preprocess now. cb(::megdnn::dtype::QuantizedS16) #undef cb if (tensor.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) { auto ptr = static_cast(tensor.raw_ptr); if (output_is_float()) { for (size_t i = 0; i < nr_elems; i += 2) { uint8_t val0 = tensor.layout.dtype.param() .quantize(static_cast(gen_single_val())) .as_uint8(); uint8_t val1 = tensor.layout.dtype.param() .quantize(static_cast(gen_single_val())) .as_uint8(); ptr[(offset + i) / 2] = (val1 << 4) | val0; } } else { for (size_t i = 0; i < nr_elems; i += 2) { uint8_t val0 = static_cast(gen_single_val()); uint8_t val1 = static_cast(gen_single_val()); ptr[(offset + i) / 2] = (val1 << 4) | val0; } } return; } if (tensor.layout.dtype.enumv() == DTypeEnum::QuantizedS4) { auto ptr = static_cast(tensor.raw_ptr); if (output_is_float()) { for (size_t i = 0; i < nr_elems; i += 2) { int8_t val0 = tensor.layout.dtype.param() .quantize(static_cast(gen_single_val())) .as_int8(); int8_t val1 = tensor.layout.dtype.param() .quantize(static_cast(gen_single_val())) .as_int8(); ptr[(offset + i) / 2] = (val0 & 0xF) | (val1 << 4); } } else { for (size_t i = 0; i < nr_elems; i += 2) { int8_t val0 = static_cast(gen_single_val()); int8_t val1 = static_cast(gen_single_val()); val0 = std::min(val0,DTypeTrait::max()); val0 = std::max(val0,DTypeTrait::min()); val1 = std::min(val1,DTypeTrait::max()); val1 = std::max(val1,DTypeTrait::min()); ptr[(offset + i) / 2] = (val0 & 0xF) | (val1 << 4); } } return; } if (tensor.layout.dtype.enumv() == DTypeEnum::Byte) { memset(tensor.raw_ptr, 0, tensor.layout.access_bytes()); return; } megdnn_assert(0, "IIDRNG does not know how to generate value for DType %s", tensor.layout.dtype.name()); } bool IIDRNG::has_fast_float32() { return false; } void IIDRNG::fill_fast_float32(dt_float32 *, size_t ) { megdnn_assert(0); } dt_float32 NormalRNG::gen_single_val() { auto &&gen = RandomState::generator(); return m_dist(gen); } bool NormalRNG::has_fast_float32() { return true; } void NormalRNG::fill_fast_float32(dt_float32 *dest, size_t size) { RNGxorshf gen{RandomState::generator()}; for (size_t i = 0; i < size; ++ i) { dest[i] = m_dist(gen); } } void ConstValue::fill_fast_float32(dt_float32 *dest, size_t size) { for (size_t i = 0; i < size; ++ i) dest[i] = value_; } dt_float32 UniformIntRNG::gen_single_val() { auto &&gen = RandomState::generator(); return static_cast(m_dist(gen)); } dt_float32 UniformIntNonZeroRNG::gen_single_val() { auto&& gen = RandomState::generator(); auto ret = UniformIntRNG::gen_single_val(); if (m_dist_flip(gen)) { ret = -ret; } megdnn_assert(ret != 0); return ret; } dt_float32 UniformFloatRNG::gen_single_val() { auto &&gen = RandomState::generator(); return m_dist(gen); } bool UniformFloatRNG::has_fast_float32() { return true; } void UniformFloatRNG::fill_fast_float32(dt_float32 *dest, size_t size) { RNGxorshf gen{RandomState::generator()}; auto k = double(m_dist.b() - m_dist.a()) / double(RNGxorshf::max() - RNGxorshf::min() + 1.0); auto b = m_dist.a() - RNGxorshf::min() * k; for (size_t i = 0; i < size; ++ i) { dest[i] = gen() * k + b; } } dt_float32 UniformFloatNonZeroRNG::gen_single_val() { auto&& gen = RandomState::generator(); auto ret = UniformFloatRNG::gen_single_val(); if (m_dist_flip(gen)) { ret = -ret; } megdnn_assert(ret != 0); return ret; } void UniformFloatNonZeroRNG::fill_fast_float32(dt_float32* dest, size_t size) { RNGxorshf gen{RandomState::generator()}; UniformFloatRNG::fill_fast_float32(dest, size); for (size_t i = 0; i < size; ++i) { if (m_dist_flip(gen)) { dest[i] = -dest[i]; } } } void UniformFloatWithValueRNG::fill_fast_float32(dt_float32 *dest, size_t size) { RNGxorshf gen{RandomState::generator()}; auto k = double(m_dist.b() - m_dist.a()) / double(RNGxorshf::max() - RNGxorshf::min() + 1.0); auto b = m_dist.a() - RNGxorshf::min() * k; auto p = 1.0 / double(RNGxorshf::max() - RNGxorshf::min() + 1.0); auto pb = 0.f - RNGxorshf::min() * p; for (size_t i = 0; i < size; ++ i) { float rnd = gen() * p + pb; if(rnd < val_proportion_) { dest[i] = val_; } else { dest[i] = gen() * k + b; } } } BernoulliRNG::BernoulliRNG(float probability_): m_dist(0, 1) { megdnn_assert(0.0f <= probability_ && probability_ < 1.0f); m_probability = probability_; } dt_float32 BernoulliRNG::gen_single_val() { auto &&gen = RandomState::generator(); return m_dist(gen) < m_probability ? 1.0 : 0.0; } void NoReplacementRNG::gen(const TensorND &tensor) { auto offset = tensor.layout.span().low_elem; auto nr_elems = tensor.layout.span().dist_elem(); #define cb(DType) \ if (tensor.layout.dtype == DType()) { \ using ctype = typename DTypeTrait::ctype; \ std::set values; \ auto ptr = tensor.ptr(); \ for (size_t i = 0; i < nr_elems; ++i) { \ ctype val; \ do { \ val = static_cast(m_iid_rng->gen_single_val()); \ } while (!values.insert(val).second); \ ptr[offset+i] = val; \ } \ } MEGDNN_FOREACH_COMPUTING_DTYPE(cb); #undef cb } InvertibleMatrixRNG::InvertibleMatrixRNG() : m_rng{new RNGxorshf{RandomState::generator()}} { } InvertibleMatrixRNG::~InvertibleMatrixRNG() noexcept = default; template void InvertibleMatrixRNG::do_gen(ctype *ptr, size_t batch, size_t n) { auto&& gen = *m_rng; std::vector perm(n); for (size_t i = 0; i < n; ++ i) { perm[i] = i; } for (size_t i = 0; i < batch; ++ i, ptr += n * n) { for (size_t j = 0; j < n; ++ j) { for (size_t k = 0; k < n; ++ k) { ptr[j * n + k] = static_cast( gen() / (RNGxorshf::max() + 1.0) * 2 - 0.5); } } for (size_t i = 0; i < n; ++ i) { auto idx = gen() % (n - i) + i; ptr[i * n + perm[idx]] += static_cast(gen() / (RNGxorshf::max() + 1.0) + 3); std::swap(perm[idx], perm[i]); } } } void InvertibleMatrixRNG::gen(const TensorND& tensor) { #define cb(DType) \ if (tensor.layout.dtype == DType()) { \ using ctype = typename DTypeTrait::ctype; \ auto ptr = tensor.ptr(); \ megdnn_assert(tensor.layout.ndim >= 2 && \ tensor.layout.is_physical_contiguous()); \ size_t batch = 1; \ for (size_t i = 0; i < tensor.layout.ndim - 2; ++i) { \ batch *= tensor.layout[i]; \ } \ size_t n = tensor.layout[tensor.layout.ndim - 1]; \ megdnn_assert(n == tensor.layout[tensor.layout.ndim - 2]); \ do_gen(ptr, batch, n); \ return; \ } MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb) #undef cb } void ConsecutiveRNG::fill_fast_float32(dt_float32* dest, size_t size) { for (size_t i = 0; i < size; ++ i) dest[i] = value_ + i * delta_; } TEST(RNG, NO_REPLACEMENT_RNG) { static const size_t N = 10, TIMES = 100; UniformIntRNG base_rng(0, N-1); NoReplacementRNG rng(&base_rng); auto handle = create_cpu_handle(2, false); for (size_t t = 0; t < TIMES; ++t) { TensorLayout layout({N}, dtype::Float32()); Tensor<> tensor(handle.get(), layout); rng.gen(tensor.tensornd()); std::vector vals; for (size_t i = 0; i < N; ++i) vals.push_back(tensor.ptr()[i]); std::sort(vals.begin(), vals.end()); for (size_t i = 0; i < N; ++i) ASSERT_EQ(static_cast(i), vals[i]); } } // vim: syntax=cpp.doxygen