#include "megbrain/imperative/transformations/eval.h" namespace mgb { namespace imperative { DTypeValue::ref_t InterpreterValue::dtype() const { if (!m_dtype) { m_dtype = DTypeValue::make(handle()->channel()->get_dtype(handle()->handle())); } return m_dtype; } CompNodeValue::ref_t InterpreterValue::comp_node() const { if (!m_comp_node) { m_comp_node = CompNodeValue::make( handle()->channel()->get_device(handle()->handle())); } return m_comp_node; } ShapeValue::ref_t InterpreterValue::shape() const { if (!m_shape) { m_shape = ShapeValue::make( ValueShape::from(handle()->channel()->get_shape(handle()->handle()))); } return m_shape; } ValueRefList InterpreterTransformation::apply_op( const ApplyOp& apply_op, Span inputs) { SmallVector input_handles; SmallVector output_handles; CleanupGuard _{[&] { for (auto handle : output_handles) { if (handle) { m_channel->del(handle); } } }}; for (auto input : inputs) { input_handles.push_back(input.cast(m_value_type).handle()->handle()); } output_handles = m_channel->apply_op(apply_op.op().shared_from_this(), input_handles); ValueRefList outputs(output_handles.size()); for (size_t i = 0; i < output_handles.size(); ++i) { outputs[i] = m_value_type.make(share_handle(output_handles[i])); output_handles[i] = nullptr; } output_handles.clear(); return outputs; } ValueRefList InterpreterTransformation::apply_get_attr( const GetAttr& get_attr, Span inputs) { auto& input = inputs.item().cast(m_value_type); ValueRef output; switch (get_attr.attr()) { case GetAttr::DType: output = input.dtype(); break; case GetAttr::Shape: output = input.shape(); break; case GetAttr::Device: output = input.comp_node(); break; case GetAttr::Value: output = HostValue::make(m_channel->get_value(input.handle()->handle())); break; case GetAttr::Data: output = DeviceValue::make( m_channel->get_dev_tensor(input.handle()->handle())); break; default: mgb_throw( MegBrainError, "Interpreter: malformed GetAttr: %s", get_attr.to_string().c_str()); } return {output}; } ValueRefList InterpreterTransformation::apply_create_tensor( const CreateTensor& create_tensor, Span inputs) { auto args = create_tensor.parse(inputs); if (!args.device) { // implies H2D mgb_assert(args.host, "neither host and device value is valid"); return {m_value_type.make(share_handle( m_channel->put(*args.host, args.kind == CreateTensor::Unique)))}; } else { return {m_value_type.make(share_handle(m_channel->put( *args.device, args.host ? *args.host : HostTensorND())))}; } } ValueRefList InterpreterTransformation::apply_transformation( const Operator& op, Span inputs) { if (auto* op_val = op.as()) { if (op_val->op().same_type()) { return inputs[0]; } else { return apply_op(*op_val, inputs); } } else if (auto* get_attr = op.as()) { return apply_get_attr(*get_attr, inputs); } else if (auto* create_tensor = op.as()) { return apply_create_tensor(*create_tensor, inputs); } else if (auto* dtr_command = op.as()) { auto handle = inputs[0].cast(m_value_type).handle()->handle(); switch (dtr_command->kind()) { case DTRCommand::Drop: m_channel->drop(handle); break; default: mgb_throw(AssertionError, "unknown DTRCommand %d", dtr_command->kind()); } return {}; } else if (auto* rename_value = op.as()) { auto& input = inputs[0].cast(m_value_type); return {m_value_type.make(input.handle(), rename_value->name())}; } else if (op.is()) { auto name = inputs[0].cast(m_value_type).name(); if (!name.empty()) { return {StringValue::make(name)}; } else { return {ValueRef()}; } } else if (op.is()) { auto& input = inputs[0].cast(m_value_type); DeviceTensorND dev_tensor; dev_tensor.copy_from(m_channel->get_dev_tensor(input.handle()->handle())); return m_value_type.make(share_handle(m_channel->put(dev_tensor, {}))); } else { return op.fallback(inputs); } } } // namespace imperative } // namespace mgb