/** * \file dnn/test/common/resize.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include #include "megdnn/basic_types.h" #include "megdnn/opr_param_defs.h" #include "./rng.h" namespace megdnn { namespace test { namespace resize { using IMode = param::Resize::InterpolationMode; struct TestArg { param::Resize param; TensorShape src; TensorShape dst; TestArg(param::Resize param_, TensorShape src_, TensorShape dst_) : param(param_), src(src_), dst(dst_) {} }; // Get the args for linear test static void set_linear_args(std::vector& args) { // test src_rows == dst_rows * 2 && src_cols == dst_cols * 2 param::Resize cur_param; cur_param.format = param::Resize::Format::NHWC; cur_param.imode = param::Resize::InterpolationMode::INTER_LINEAR; args.emplace_back(cur_param, TensorShape{1, 6, 6, 1}, TensorShape{1, 3, 3, 1}); // test resize_linear_Restric_kernel // CH == 3 && dst_rows < src_rows && dst_cols < src_cols args.emplace_back(cur_param, TensorShape{1, 4, 4, 3}, TensorShape{1, 3, 3, 3}); // test else args.emplace_back(cur_param, TensorShape{1, 4, 4, 1}, TensorShape{1, 3, 3, 1}); args.emplace_back(cur_param, TensorShape{1, 4, 6, 1}, TensorShape{1, 10, 9, 1}); args.emplace_back(cur_param, TensorShape{1, 4, 6, 3}, TensorShape{1, 10, 9, 3}); } static void set_nchw_args(std::vector& args) { param::Resize param; param.format = param::Resize::Format::NCHW; param.imode = param::Resize::InterpolationMode::LINEAR; args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 2, 6, 8}); args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 4, 3}); args.emplace_back(param, TensorShape{1, 2, 6, 8}, TensorShape{1, 2, 3, 4}); } static inline std::vector get_args(IMode imode = IMode::INTER_LINEAR) { std::vector args; set_nchw_args(args); if (imode == IMode::INTER_LINEAR) { //! test NHWC with ch != 1 or ch != 3 param::Resize param; param.format = param::Resize::Format::NHWC; param.imode = imode; args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 4, 6, 4}); args.emplace_back(param, TensorShape{2, 4, 6, 4}, TensorShape{2, 2, 3, 4}); } return args; } static inline std::vector get_nhwcd4_args() { std::vector args; param::Resize param; param.format = param::Resize::Format::NHWCD4; param.imode = param::Resize::InterpolationMode::LINEAR; args.emplace_back(param, TensorShape{2, 2, 1, 3, 4}, TensorShape{2, 4, 1, 6, 4}); args.emplace_back(param, TensorShape{2, 4, 1, 6, 4}, TensorShape{2, 2, 1, 3, 4}); return args; } static inline std::vector get_nchw4_args() { std::vector args; param::Resize param; param.format = param::Resize::Format::NCHW4; param.imode = param::Resize::InterpolationMode::LINEAR; args.emplace_back(param, TensorShape{1, 1, 2, 3, 4}, TensorShape{1, 1, 2, 6, 4}); args.emplace_back(param, TensorShape{2, 2, 2, 2, 4}, TensorShape{2, 2, 2, 4, 4}); args.emplace_back(param, TensorShape{2, 4, 6, 8, 4}, TensorShape{2, 4, 3, 4, 4}); return args; } static inline std::vector get_nchw44_args() { std::vector args; param::Resize param; param.format = param::Resize::Format::NCHW44; param.imode = param::Resize::InterpolationMode::LINEAR; rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) args.emplace_back( param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul}, TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul}); param.imode = param::Resize::InterpolationMode::NEAREST; rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) args.emplace_back( param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul}, TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul}); return args; } static inline std::vector get_nchw88_args() { std::vector args; param::Resize param; param.format = param::Resize::Format::NCHW88; param.imode = param::Resize::InterpolationMode::LINEAR; rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) args.emplace_back( param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul}, TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul}); param.imode = param::Resize::InterpolationMode::NEAREST; rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) args.emplace_back( param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul}, TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul}); return args; } static inline std::vector get_cv_args() { std::vector args; set_linear_args(args); param::Resize cur_param; cur_param.format = param::Resize::Format::NHWC; for (size_t i = 8; i < 129; i *= 4) { cur_param.imode = param::Resize::InterpolationMode::INTER_NEAREST; args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, i / 2, i / 2, 3}); args.emplace_back(cur_param, TensorShape{1, i, i, 1}, TensorShape{1, 8, 8, 1}); cur_param.imode = param::Resize::InterpolationMode::INTER_AREA; args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3}); cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC; args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3}); cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4; args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3}); } //! cuda not use vector //! enlarge==true && dst_area_size > 500 * 500 cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC; args.emplace_back(cur_param, TensorShape{1, 3, 3, 1}, TensorShape{1, 500, 600, 1}); cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4; args.emplace_back(cur_param, TensorShape{1, 3, 3, 1}, TensorShape{1, 500, 600, 1}); return args; } } // namespace resize } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen