/** * \file dnn/src/fallback/conv_bias/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "src/fallback/convolution/opr_impl.h" #include "src/common/algo_chooser.h" #include "src/common/metahelper.h" #include "src/common/opr_delegate.h" #include "src/common/utils.h" #include "src/fallback/conv_bias/algos.h" #include "src/fallback/conv_bias/conv1x1/algos.h" #include "src/fallback/conv_bias/conv1x1/algos_conv1x1_gemv.h" #include "src/fallback/conv_bias/im2col/algos.h" #include "src/fallback/conv_bias/opr_impl.h" #include "src/naive/convolution/algorithms.h" #include "src/naive/handle.h" #include using namespace megdnn; using namespace fallback; size_t megdnn::fallback::pack_size(param::ConvBias::Format format) { switch (format) { case param::ConvBias::Format::NCHW44: case param::ConvBias::Format::NCHW44_DOT: case param::ConvBias::Format::NCHW4: return 4_z; case param::ConvBias::Format::NCHW88: return 8_z; default: return 1_z; } } namespace { template void incr_ptr(T*& dst, ptrdiff_t delta) { dst = reinterpret_cast(reinterpret_cast(dst) + delta); } } // namespace class ConvBiasImpl::AlgoPack : NonCopyableObj { AlgoNaive algo_naive; SmallVector> refhold; public: AlgoPack() { refhold.emplace_back(new AlgoConv1x1Gemv()); all_algos.emplace_back(refhold.back().get()); static CpuOprDelegationStorage<> storage; auto matmul_opr = storage.get(); auto&& matmul_algos = static_cast(matmul_opr)->algo_pack(); for (auto&& algo : matmul_algos) { #if MEGDNN_X86 //! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may //! fallback to naive implementation, which may cause performance very low, so //! here we just enable im2col for gemv in x86 backend. //! FIXME: remove it when we add direct conv support for int8x8x16 #else if (algo->algoset() == MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) { continue; } #endif for (size_t ohw_tile_size : {192, 384, 96, 48, 24}) { refhold.emplace_back(new AlgoIm2col( static_cast(algo), ohw_tile_size)); all_algos.emplace_back(refhold.back().get()); } for (size_t oc_tile_size : {48, 24}) { refhold.emplace_back(new AlgoConv1x1( static_cast(algo), oc_tile_size)); all_algos.emplace_back(refhold.back().get()); } #if 0 //! As these algos maybe very slow, it will make fastrun search slow, so //! we disable it, but for the test of strategyhelper, we just keep it. //! FIXME: I do not know a better way to do it. refhold.emplace_back(new AlgoWinogradF32( static_cast(algo))); all_algos.emplace_back(refhold.back().get()); refhold.emplace_back(new AlgoWinogradF32_4x4( static_cast(algo))); all_algos.emplace_back(refhold.back().get()); refhold.emplace_back(new AlgoWinogradQS8( static_cast(algo))); all_algos.emplace_back(refhold.back().get()); refhold.emplace_back(new AlgoWinogradQS8_8x8( static_cast(algo))); all_algos.emplace_back(refhold.back().get()); #endif } //! reverse matmul algo, when the algo is_prefer can be selected first std::reverse(all_algos.begin(), all_algos.end()); all_algos.emplace_back(&algo_naive); } SmallVector all_algos; }; SmallVector ConvBiasImpl::algo_pack() { static AlgoPack sl_algo_pack; return sl_algo_pack.all_algos; } bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) { return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0; } #define NCB_ALGO_FUNC(name, algo, param) \ static_cast(algo)->name(param) void ConvBiasImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z, _megdnn_tensor_out dst, const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) { check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, workspace.size, preprocessed_filter); auto fparam = make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter); ConvBiasImpl::Algorithm* algo = get_algorithm(fparam, workspace.size); if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) { exec_with_ncb_kern(fparam, algo); } else { naive::ConvBiasForwardImpl::exec(src, filter, bias, z, dst, preprocessed_filter, workspace); } } void ConvBiasImpl::exec_preprocess(const TensorLayout& src_layout, _megdnn_tensor_in filter, const TensorLayout& bias_layout, const TensorLayout& z_layout, const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) { //! exec_preprocess currently only support preprocess weights before exec, //! src/dst/bias/z will be ignored, just set to nullptr TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout}, bias{nullptr, bias_layout}; auto fparam = make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter); ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size); if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam) <= workspace.size) { exec_preprocess_with_ncb_kern(fparam, algo); } else { naive::ConvBiasForwardImpl::exec_preprocess( src_layout, filter, bias_layout, z_layout, dst_layout, preprocessed_filter, workspace); } } size_t ConvBiasImpl::get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) { auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, preprocessed_filter); ConvBiasImpl::Algorithm* algo = get_algorithm(fparam); if (is_naive_algo(algo)) { return naive::ConvBiasForwardImpl::get_workspace_in_bytes( src, filter, bias, z, dst, preprocessed_filter); } else { return NCB_ALGO_FUNC(get_workspace, algo, fparam); } } size_t ConvBiasImpl::get_preprocess_workspace_in_bytes( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst) { auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr); Algorithm* algo = get_algorithm(fparam); if (is_naive_algo(algo)) { return naive::ConvBiasForwardImpl::get_preprocess_workspace_in_bytes( src, filter, bias, z, dst); } else { return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam); } } SmallVector ConvBiasImpl::deduce_preprocessed_filter_layout( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst) { auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr); Algorithm* algo = get_algorithm(fparam); if (is_naive_algo(algo)) { return naive::ConvBiasForwardImpl::deduce_preprocessed_filter_layout( src, filter, bias, z, dst); } else { return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam); } } std::vector ConvBiasImpl::get_all_algorithms( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst) { auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr); auto ret = get_all_algorithms_with_ncb(fparam); if (ret.empty()) { return naive::ConvBiasForwardImpl::get_all_algorithms(src, filter, bias, z, dst); } return ret; } ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst, size_t workspace_limit_in_bytes, bool reproducible) { auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr); auto result = get_algorithm_heuristic_with_ncb( fparam, workspace_limit_in_bytes, reproducible); if (result == nullptr) { result = naive::ConvBiasForwardImpl::get_algorithm_heuristic( src, filter, bias, z, dst, workspace_limit_in_bytes, reproducible); } return result; } ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb( const NCBKernSizeParam& param, size_t workspace_limit_in_bytes, bool reproducible) { for (auto i : get_all_algorithms_with_ncb(param)) { if (static_cast(i)->usable_reproducible( param, AlgoSelectionStrategy::HEURISTIC, reproducible) && NCB_ALGO_FUNC(get_workspace, i, param) <= workspace_limit_in_bytes) { return i; } } return nullptr; } ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param( const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) { auto safe_u32 = [](size_t v) -> uint32_t { megdnn_assert(v <= std::numeric_limits::max(), "value too large: %zu", v); return v; }; size_t spatial_pos; if (param().format == Param::Format::NCHW88 || param().format == Param::Format::NCHW8 || param().format == Param::Format::NCHW4 || param().format == Param::Format::NCHW44 || param().format == Param::Format::NCHW44_DOT || param().format == Param::Format::NCHW || param().format == Param::Format::NCHW_WINOGRAD || param().format == Param::Format::NCHW88_WINOGRAD || param().format == Param::Format::NCHW44_WINOGRAD) { spatial_pos = 2; } else if (param().format == Param::Format::NHWC) { spatial_pos = 1; } else { megdnn_assert(0, "invalid conv format %d", static_cast(param().format)); } BiasMode bias_mode; if (bias.ndim == 0) { bias_mode = BiasMode::NO_BIAS; } else if (bias.eq_shape(dst)) { bias_mode = BiasMode::BIAS; } else { //! just check the ndim, the detail shape check is in check_exec megdnn_assert(bias.ndim == dst.ndim); bias_mode = BiasMode::BROADCAST_CHANNEL_BIAS; } static_assert(sizeof(CanonizedFilterMeta) == sizeof(ConvolutionImpl::CanonizedFilterMeta), "sizeof CanonizedFilterMeta in convolution and conv_bias " "should be equal"); CanonizedFilterMeta fm = check_layout_fwd(src, filter, dst); ConvolutionImpl::CanonizedFilterMeta conv_fm; conv_fm.copy_from(fm); param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT; if (param().format == Param::Format::NCHW_WINOGRAD || param().format == Param::Format::NCHW88_WINOGRAD || param().format == Param::Format::NCHW44_WINOGRAD) { size_t flt_start = 0; if (param().sparse == Param::Sparse::GROUP) { flt_start = 1; } if (filter.ndim == 6 + flt_start) { if (filter[5] == 4) { format = param::MatrixMul::Format::MK4; } else { megdnn_assert(filter[5] == 8); format = param::MatrixMul::Format::MK8; } } } size_t nr_threads = static_cast(handle()) ->megcore_dispatcher() ->nr_threads(); return {{safe_u32(src[0]), {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}}, {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}}, conv_fm, src.dtype, filter.dtype, dst.dtype, src.stride[0], dst.stride[0], {src.stride[0], src.stride[1], src.stride[2], src.stride[3]}, {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]}, param().compute_mode, nr_threads, reinterpret_cast( preprocessed_filter)}, param().output_block_size, format, bias.dtype, bias.stride[0], bias_mode, param().nonlineMode}; } ConvBiasImpl::NCBKernParam ConvBiasImpl::make_ncb_kern_param( _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_out dst, _megdnn_workspace workspace, const PreprocessedFilter* preprocessed_filter) { NCBKernParam ret; static_cast(ret) = make_ncb_kern_size_param(src.layout, filter.layout, bias.layout, dst.layout, preprocessed_filter); ret.src_ptr = src.raw_ptr; ret.filter_ptr = filter.raw_ptr; ret.bias_ptr = bias.raw_ptr; ret.dst_ptr = dst.raw_ptr; ret.workspace_ptr = workspace.raw_ptr; ret.workspace_size = workspace.size; return ret; } void ConvBiasImpl::exec_with_ncb_kern(const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) { auto ncb_kerns = NCB_ALGO_FUNC(dispatch_kerns, algo, param); for (auto&& kernel : ncb_kerns) { auto run = [kernel, param](size_t index, size_t thread_id) { CpuNDRange ndrange_id(kernel.global_size, index); kernel.kern(param, {thread_id, ndrange_id}); }; static_cast(handle())->dispatch_kern( run, kernel.global_size.total_size()); } } void ConvBiasImpl::exec_preprocess_with_ncb_kern( const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) { auto ncb_kerns = NCB_ALGO_FUNC(dispatch_preprocess_kerns, algo, param); for (auto&& kernel : ncb_kerns) { auto run = [kernel, param](size_t index, size_t thread_id) { CpuNDRange ndrange_id(kernel.global_size, index); kernel.kern(param, {thread_id, ndrange_id}); }; static_cast(handle())->dispatch_kern( run, kernel.global_size.total_size()); } } std::vector ConvBiasImpl::get_all_algorithms_with_ncb( const NCBKernSizeParam& param) { MEGDNN_MARK_USED_VAR(param); std::vector algos; std::vector prefer_algos; for (auto&& algo : algo_pack()) { if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) { if (algo->is_preferred(param)) { prefer_algos.push_back(algo); } else { algos.push_back(algo); } } } std::reverse(prefer_algos.begin(), prefer_algos.end()); //! Prefer algo inserted from begin algos.insert(algos.begin(), prefer_algos.begin(), prefer_algos.end()); return algos; } ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm( const NCBKernSizeParam& param, size_t workspace_size) { if (auto set = execution_policy().algorithm) { return set; } if (!m_prev_selected_algo || memcmp(&m_prev_selected_algo_sizep, ¶m, sizeof(NCBKernSizeParam))) { m_prev_selected_algo = get_algorithm_heuristic_with_ncb(param, workspace_size); m_prev_selected_algo_sizep = param; } return m_prev_selected_algo; } const char* ConvBiasImpl::get_algorithm_set_name() const { // fallback version 0 return "F0"; } namespace megdnn { namespace fallback { template const T* ConvBiasImpl::NCBKernParam::src(size_t batch_id, size_t group_pack_id, size_t channel_pack_id, size_t group_pack_size, size_t channel_pack_size) const { size_t batch_offset = batch_id * inp_bs * src_type.size(); size_t group_offset = group_pack_size * group_pack_id * filter_meta.icpg * isz[0] * isz[1] * src_type.size(); size_t channel_offset = channel_pack_size * channel_pack_id * isz[0] * isz[1] * src_type.size(); return reinterpret_cast(reinterpret_cast(src_ptr) + batch_offset + group_offset + channel_offset); } template const T* ConvBiasImpl::NCBKernParam::filter(size_t group_pack_id, size_t pack_group_size) const { size_t group_offset = 0_z; switch (filter_meta.format) { case Param::Format::NCHW: { group_offset = pack_group_size * group_pack_id * filter_meta.icpg * filter_meta.ocpg * filter_meta.spatial[0] * filter_meta.spatial[1] * filter_type.size(); break; } case Param::Format::NCHW88: { size_t group = filter_meta.group; size_t icpg = filter_meta.icpg; size_t ocpg = filter_meta.ocpg; //! four format of weight layout //! 1. {oc/8, ic/8, fh, fw, 8, 8}, //! 2. {g, oc/8, ic/8, fh, fw, 8, 8}, //! 3. {g/8, fh, fw, 1, 1, 8}, 4. {oc/8, fh, fw, ic, 8} megdnn_assert((icpg % 8 == 0 && ocpg % 8 == 0) || (group % 8 == 0 && icpg == 1 && ocpg == 1 && pack_group_size > 1) || (group == 1 && ocpg % 8 == 0), "The filter shepe is not right of nchw88"); group_offset = pack_group_size * group_pack_id * filter_meta.icpg * filter_meta.ocpg * filter_meta.spatial[0] * filter_meta.spatial[1] * filter_type.size(); break; } case Param::Format::NCHW44_DOT: case Param::Format::NCHW44: { size_t group = filter_meta.group; size_t icpg = filter_meta.icpg; size_t ocpg = filter_meta.ocpg; //! four format of weight layout //! 1. {oc/4, ic/4, fh, fw, 4, 4}, //! 2. {g, oc/4, ic/4, fh, fw, 4, 4}, //! 3. {g/4, fh, fw, 1, 1, 4}, 4. {oc/4, fh, fw, ic, 4} megdnn_assert((icpg % 4 == 0 && ocpg % 4 == 0) || (group % 4 == 0 && icpg == 1 && ocpg == 1 && pack_group_size > 1) || (group == 1 && ocpg % 4 == 0), "The filter shepe is not right of nchw44"); group_offset = pack_group_size * group_pack_id * filter_meta.icpg * filter_meta.ocpg * filter_meta.spatial[0] * filter_meta.spatial[1] * filter_type.size(); break; } case ConvBiasImpl::Param::Format::NCHW_WINOGRAD: case ConvBiasImpl::Param::Format::NCHW44_WINOGRAD: case ConvBiasImpl::Param::Format::NCHW88_WINOGRAD: { //! four format of weight layout //! 1. {g, alpha, alpha, ocpg/8, icpg/8, 8, 8} //! 2. {alpha, alpha, ocpg/8, icpg/8, 8, 8} //! 3. {g, alpha, alpha, oc, ic, 8, 8} //! 4. {alpha, alpha, oc, ic} group_offset = pack_group_size * group_pack_id * filter_meta.icpg * filter_meta.ocpg * (filter_meta.spatial[0] + output_block_size - 1) * (filter_meta.spatial[1] + output_block_size - 1) * filter_type.size(); break; } default: megdnn_assert(0, "other filter format is not support yet"); } return reinterpret_cast(reinterpret_cast(filter_ptr) + group_offset); } template const T* ConvBiasImpl::NCBKernParam::bias(size_t batch_id, size_t group_pack_id, size_t channel_pack_id, size_t group_pack_size, size_t channel_pack_size) const { size_t batch_offset = 0_z; size_t group_offset = 0_z; size_t channel_offset = 0_z; if (bias_mode == BiasMode::BIAS) { batch_offset = batch_id * bias_bs * bias_type.size(); group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] * osz[1] * bias_type.size(); channel_offset = channel_pack_size * channel_pack_id * osz[0] * osz[1] * bias_type.size(); } else if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) { group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * bias_type.size(); channel_offset = channel_pack_size * channel_pack_id * bias_type.size(); } return reinterpret_cast(reinterpret_cast(bias_ptr) + batch_offset + group_offset + channel_offset); } template T* ConvBiasImpl::NCBKernParam::dst(size_t batch_id, size_t group_pack_id, size_t channel_pack_id, size_t group_pack_size, size_t channel_pack_size) const { size_t batch_offset = batch_id * out_bs * dst_type.size(); size_t group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] * osz[1] * dst_type.size(); size_t channel_offset = channel_pack_size * channel_pack_id * osz[0] * osz[1] * dst_type.size(); return reinterpret_cast(reinterpret_cast(dst_ptr) + batch_offset + group_offset + channel_offset); } #define INST(T) \ template const T* ConvBiasImpl::NCBKernParam::src( \ size_t batch_id, size_t group_id, size_t channel_id, \ size_t group_pack_size, size_t channel_pack_size) const; \ template const T* ConvBiasImpl::NCBKernParam::bias( \ size_t batch_id, size_t group_id, size_t channel_id, \ size_t group_pack_size, size_t channel_pack_size) const; \ template const T* ConvBiasImpl::NCBKernParam::filter( \ size_t group_id, size_t group_pack_size) const; \ template T* ConvBiasImpl::NCBKernParam::dst( \ size_t batch_id, size_t group_id, size_t channel_id, \ size_t group_pack_size, size_t channel_pack_size) const; #define INST_DT(d) INST(DTypeTrait::ctype) MEGDNN_FOREACH_COMPUTING_DTYPE(INST_DT) INST(void) #undef INST #undef INST_DT } // namespace fallback } // namespace megdnn // vim: syntax=cpp.doxygen