/** * \file dnn/src/cuda/convolution/backward_data/algo.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "./algo.h" #include "src/cuda/utils.h" using namespace megdnn; using namespace cuda; ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { non_cudnn_algos.push_back(&chanwise); non_cudnn_algos.push_back(&chanwise_small); non_cudnn_algos.push_back(&matmul); all_algos.push_back(&chanwise); // prefer chanwise all_algos.push_back(&chanwise_small); // prefer small chanwise fill_cudnn_algos(); for (auto&& i : cudnn) { all_algos.push_back(&i); } all_algos.push_back(&matmul); fill_int8_dp4a_algos(); for (auto&& algo : int8_nchw4_dotprod) { all_algos.push_back(&algo); int8_algos.push_back(&algo); } int8_algos.push_back(&int8_nchw_dotprod); all_algos.push_back(&int8_nchw_dotprod); all_algos.reserve(all_algos.size() * 2); // add gconv algos by AlgoGroupConvGeneral auto all_algos_data = all_algos.data(); size_t group_algo_start = 2; for (size_t i = group_algo_start; i < all_algos.size(); ++i) { gconv.push_back({all_algos[i]}); } for (size_t i = group_algo_start; i < all_algos.size(); ++i) { algo2gconv[all_algos[i]] = &gconv[i - group_algo_start]; } for (auto&& i : gconv) { all_algos.push_back(&i); } megdnn_assert(all_algos_data == all_algos.data()); non_cudnn_algos.push_back(all_algos.rbegin()[0]); // group matmul all_algos.push_back(&bfloat16); bfloat16_algos.push_back(&bfloat16); for (auto&& algo : all_algos) { m_all_algos_map.emplace(algo->info().desc, algo); } } MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvolutionBackwardDataImpl) ConvolutionBackwardDataImpl::AlgoCUDNN* ConvolutionBackwardDataImpl::AlgoPack::cudnn_from_enum( cudnnConvolutionBwdDataAlgo_t algo) { for (auto&& i : cudnn) { if (i.cudnn_enum() == algo) return &i; } megdnn_throw( megdnn_mangle(ssprintf("can not find cudnn bwd_data algorithm %d", static_cast(algo)))); } ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack; ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs( ConvolutionBackwardDataImpl* o, const TensorLayout& filter, const TensorLayout& diff, const TensorLayout& grad) : SizeArgs(o, filter, o->check_layout_fwd(grad, filter, diff), diff, grad) {} ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::SizeArgs( ConvolutionBackwardDataImpl* o, const TensorLayout& filter, const CanonizedFilterMeta& filter_meta, const TensorLayout& diff, const TensorLayout& grad) : handle{concrete_handle(o->handle())}, filter_meta{filter_meta}, diff_layout{&diff}, grad_layout{&grad}, filter_layout{&filter}, opr{o} {} ConvolutionBackwardDataImpl::AlgoBase::ExecArgs::ExecArgs( ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace) : SizeArgs(opr, filter.layout, diff.layout, grad.layout), filter_tensor{&filter}, diff_tensor{&diff}, grad_tensor{&grad}, workspace{workspace} {} std::string ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::to_string() const { auto&& fm = filter_meta; MEGDNN_MARK_USED_VAR(fm); return megdnn_mangle(ssprintf( "filter=%u{%u,%u,%u,%u}, diff=%s, grad=%s, " "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s", fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], diff_layout->to_string().c_str(), grad_layout->to_string().c_str(), fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1], fm.dilation[0], fm.dilation[1], !fm.should_flip, diff_layout->dtype.name(), grad_layout->dtype.name())); } // vim: syntax=cpp.doxygen