/** * \file imperative/src/impl/ops/reduce.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/graph/symbol_var.h" #include "megbrain/imperative/ops/autogen.h" #include "megbrain/imperative/proxy_graph_detail.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/internal/megdnn_opr_wrapper.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_manip.h" #include "megdnn/dtype.h" #include "../blob_manager_impl.h" #include "../dnn_op_helper.h" #include "../op_trait.h" namespace mgb { namespace imperative { namespace { namespace reduce { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& reduce = static_cast(def); auto comp_node = inputs[0]->comp_node(); OperatorNodeConfig config{reduce.make_name(), comp_node, inputs[0]->dtype()}; if (inputs.size() > 1) { return opr::Reduce::make(inputs[0], reduce.param(), inputs[1], config); } using Param = megdnn::param::Reduce; auto param = reduce.param(); if (param.axis < 0) { param.axis = inputs[0]->shape().ndim + param.axis; } SymbolVar target_shape = (cg::VarNode*)nullptr; if (param.axis == INT_MAX) { DTypeScalar vi{1}; // auto graph = ComputingGraph::make(); auto graph = inputs[0]->owner_graph(); target_shape = opr::ImmutableTensor::make(*graph, vi, config); } auto res = opr::Reduce::make(inputs[0], param, target_shape, config); if (!reduce.keepdim && param.axis != INT_MAX) { using Desc = opr::AxisAddRemove::AxisDesc; std::vector remove_param; remove_param.push_back(Desc::make_remove(param.axis)); OperatorNodeConfig remove_config{ def.make_name(), comp_node, inputs[0]->dtype()}; return opr::AxisAddRemove::make(res, remove_param, remove_config); } return res; } std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { auto* node = &node_->cast_final_safe(); return Reduce::make(node->param(), true); } // TODO: using this for apply_on_physical_tensor bool memory_forward_success(const OpDef& def, SmallVector inputs) { auto&& reduce = static_cast(def); if (reduce.mode != Reduce::Mode::SUM_SQR && inputs.size() == 2) { auto shape_tensor = inputs[1]->get_value(); TensorShape shape; cg::copy_tensor_value_to_shape(shape, shape_tensor.proxy_to_default_cpu()); if (shape.eq_shape(inputs[0]->shape())) { return true; } } return false; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { if (memory_forward_success(def, inputs)) { return {Tensor::make( inputs[0]->blob(), inputs[0]->offset(), inputs[0]->layout())}; } auto size = inputs.size(); if (size > 1) { return proxy_graph_detail::apply_on_physical_tensor( def, inputs, output_descs, validated); } auto comp_node = inputs[0]->comp_node(); using TensorND = megdnn::TensorND; auto&& op_def = def.cast_final_safe(); SmallVector inp_tensornds; inp_tensornds.reserve(inputs.size()); auto src = inputs[0]->layout(); DnnOprCaller dnn_op(comp_node); dnn_op.op->param() = op_def.param(); auto axis = op_def.param().axis; auto keepdim = op_def.keepdim; if (axis < 0) { axis = inputs[0]->layout().ndim + axis; } dnn_op.op->param().axis = axis == INT_MAX ? 0 : axis; if (axis == INT_MAX) { src.shape[0] = src.total_nr_elems(); src.ndim = 1; src.init_contiguous_stride(); } TensorLayout layout{src.dtype}; dnn_op.op->deduce_layout(src, layout); if (inputs[0]->layout().is_empty()) { inputs[0]->dev_tensor().reset(inputs[0]->dev_tensor().storage(), src); auto mode = op_def.param().mode; DnnOprCaller fill_op(comp_node); if (!keepdim && src.ndim > 1) { layout.remove_axis_inplace(axis); layout.init_contiguous_stride(); } DeviceTensorND out = BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout); std::string err_msg; switch (mode) { case Reduce::Mode::SUM: if (!out.empty()) { fill_op.op->param() = 0; fill_op.op->exec(out.as_megdnn(), {}); } break; case Reduce::Mode::PRODUCT: if (!out.empty()) { fill_op.op->param() = 1; fill_op.op->exec(out.as_megdnn(), {}); } break; case Reduce::Mode::MEAN: err_msg = "mean"; break; case Reduce::Mode::MIN: err_msg = "min"; break; case Reduce::Mode::MAX: err_msg = "max"; break; case Reduce::Mode::SUM_SQR: err_msg = "sum_sqr"; break; default: mgb_throw(MegBrainError, "bad reduce mode"); } if (!err_msg.empty()) { mgb_throw( MegBrainError, "empty input is not allowed for reduce mode: %s", err_msg.c_str()); } return {Tensor::make(out)}; } auto dnn_ten = inputs[0]->dnn_tensor(); dnn_ten.layout = src; inp_tensornds.push_back(dnn_ten); megdnn::Workspace dnn_wk; auto wk_size = dnn_op.op->get_workspace_in_bytes(src, layout); if (wk_size) { TensorLayout w_layout({wk_size}, dtype::Byte()); dnn_wk = dnn_op.create_workspace(w_layout); } DeviceTensorND out = BlobManager::inst()->alloc_workspace_with_defrag(comp_node, layout); dnn_op.op->exec(inp_tensornds[0], out.as_megdnn(), dnn_wk); if (!keepdim && src.ndim > 1) { auto out_layout = out.layout(); out_layout.remove_axis_inplace(axis); out_layout.init_contiguous_stride(); out.resize(out_layout); } return {Tensor::make(out)}; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { auto&& op_def = def.cast_final_safe(); auto axis = op_def.param().axis; auto keepdim = op_def.keepdim; size_t size = inputs.size(); SmallVector dests(size); for (size_t i = 0; i < size; i++) { if (inputs[i].layout.ndim == 0) { return {{{TensorLayout(inputs[0].layout.dtype), inputs[0].comp_node}}, false}; } } if (size > 1) { auto [output_descs, validated] = proxy_graph_detail::infer_output_attrs_fallible(def, inputs); if (!inputs[1].value.empty()) { cg::copy_tensor_value_to_shape(output_descs[0].layout, inputs[1].value); output_descs[0].layout.init_contiguous_stride(); } return {output_descs, validated}; } if (axis < 0) { axis = inputs[0].layout.ndim + axis; } if (axis == INT_MAX || inputs[0].layout.ndim == 1) { TensorLayout layout{inputs[0].layout.dtype}; layout.shape[0] = 1; layout.ndim = 1; dests[0].layout = layout; dests[0].comp_node = inputs[0].comp_node; } else { for (size_t i = 0; i < size; ++i) { dests[i].comp_node = inputs[i].comp_node; dests[i].layout = inputs[i].layout; if (not keepdim && dests[i].layout.ndim > 1) { dests[i].layout.remove_axis_inplace(axis); } else { dests[i].layout.shape[axis] = 1; } dests[i].layout.init_contiguous_stride(); } } return {dests, true}; } SmallVector get_input_layout_constraint( const OpDef& def, const SmallVector& inputs) { SmallVector layout_checker(inputs.size()); layout_checker[0] = [](const TensorLayout& layout) { return layout.is_contiguous(); }; return layout_checker; } OP_TRAIT_REG(Reduce, Reduce, opr::Reduce) .make_from_op_node(make_from_op_node) .apply_on_var_node(apply_on_var_node) .apply_on_physical_tensor(apply_on_physical_tensor) .infer_output_attrs_fallible(infer_output_attrs_fallible) .get_input_layout_constraint(get_input_layout_constraint) .fallback(); } // namespace reduce } // namespace } // namespace imperative } // namespace mgb // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}