#include "megbrain/opr/atlas_runtime_op.h" #include #include "megbrain/common.h" #include "megbrain/graph/operator_node.h" #include "megdnn/basic_types.h" #include "megdnn/dtype.h" #if MGB_ATLAS #include "acl/acl_mdl.h" using namespace mgb; using namespace opr; namespace { /** * \brief get mgb shape from acl shape, batch from mgb */ TensorShape acl_shape_to_mgb_shape_for_output(aclmdlIODims acl_shape, size_t batch) { TensorShape ret; ret.ndim = acl_shape.dimCount; for (size_t i = 0; i < ret.ndim; ++i) { ret[i] = acl_shape.dims[i]; } ret[0] = batch; return ret; } /** * \brief deduce the input shape from aclFormat and aipp config. * * \param acl_shape shape from om file * \param batch batchsize from mgb * \param enable_dynamic_batch True if set dynamic batch size * \param om_format layout format from om file * \param aipp_input_fmt input_format in static aipp config of om file */ TensorShape acl_shape_to_mgb_shape_for_input( aclmdlIODims acl_shape, size_t batch, bool enable_dynamic_batch, aclFormat om_format, AtlasRuntimeOpr::AippInputFormat aipp_input_fmt) { TensorShape ret; ret.ndim = acl_shape.dimCount; mgb_assert( ret.ndim == 4, "Unexpected ndim form aclmdlIODims expected 4, but got %zu", ret.ndim); for (size_t i = 0; i < ret.ndim; ++i) { ret[i] = acl_shape.dims[i]; } if (enable_dynamic_batch) { mgb_assert( ret[0] == static_cast(-1), "batch size expected to be -1 when enable dynamic " "batchsize, got: %zu\n", ret[0]); ret[0] = batch; } else { mgb_assert( ret[0] == batch, "batchsize mismatch if no dynamic batchsize enabled, " "expected: %zu got: %zu\n", ret[0], batch); } if (aipp_input_fmt != AtlasRuntimeOpr::AippInputFormat::NO_AIPP) { mgb_assert( om_format == ACL_FORMAT_NHWC, "om format should be NHWC if enable aipp"); } return ret; } DType acl_dtype_to_mgb_dtype(aclDataType data_type) { switch (data_type) { case ACL_UINT8: return dtype::Uint8(); case ACL_FLOAT16: #if !MEGDNN_DISABLE_FLOAT16 return dtype::Float16(); #else mgb_throw(MegBrainError, "Float16 support is disabled at compile time."); #endif case ACL_FLOAT: return dtype::Float32(); case ACL_INT8: return dtype::Int8(); case ACL_INT16: return dtype::Int16(); case ACL_INT32: return dtype::Int32(); default: mgb_throw( MegBrainError, "aclDataType %x is not supported by MegBrain.", static_cast(data_type)); } } /** * \brief generate batch size which match the batch_choice */ SmallVector gen_batch_vec( size_t origin_batch, const SmallVector& batch_choices) { SmallVector ret; size_t idx = 0; size_t nr_batch_choices = batch_choices.size(); size_t batch = origin_batch; while (idx < nr_batch_choices) { size_t val = batch_choices[idx]; while (batch >= batch_choices[idx]) { ret.push_back(val); batch -= val; } idx++; } mgb_assert( batch == 0, "Invalid batch size %zu, can not be generate by batch choices", origin_batch); return ret; } class PtrGetter { public: PtrGetter(const VarNodeArray& vars) { for (auto&& var : vars) { m_ptrs.push_back(var->dev_tensor().raw_ptr()); m_batch_in_bytes.push_back( var->layout().stride[0] * var->layout().dtype.size()); } } std::pair get(size_t batch, size_t idx) { std::pair ret; ret.first = m_ptrs[idx]; ret.second = batch * m_batch_in_bytes[idx]; m_ptrs[idx] = reinterpret_cast( reinterpret_cast(ret.first) + ret.second); return ret; } private: SmallVector m_ptrs; SmallVector m_batch_in_bytes; }; }; // namespace /* ====================== AtlasRuntimeOpr ==================== */ MGB_DYN_TYPE_OBJ_FINAL_IMPL(AtlasRuntimeOpr); AtlasRuntimeOpr::AtlasRuntimeOpr( SharedBuffer buf, const std::pair& model, const VarNodeArray& inputs, const OperatorNodeConfig& config) : Super(inputs[0]->owner_graph(), config, "atlas_runtime", inputs), m_buffer{std::move(buf)}, m_model_id{model.first}, m_model_desc{model.second} { mgb_assert( inputs[0]->comp_node().device_type() == CompNode::DeviceType::ATLAS, "AtlasRuntimeOpr can only be used on atlas comp node; " "got %s", inputs[0]->comp_node().to_string().c_str()); mgb_assert( m_buffer.data() != nullptr || (m_model_id != INVALID_MODEL_ID && m_model_desc != nullptr)); for (auto i : inputs) { add_input({i}); } if (m_model_id == INVALID_MODEL_ID && m_model_desc == nullptr) { MGB_ATLAS_CHECK( aclmdlLoadFromMem(m_buffer.data(), m_buffer.size(), &m_model_id)); m_model_desc = aclmdlCreateDesc(); MGB_ATLAS_CHECK(aclmdlGetDesc(m_model_desc, m_model_id)); m_is_model_holder = true; } //! aipp input format m_aipp_input_format = SmallVector(inputs.size()); aclAippInfo aipp_info; for (size_t i = 0; i < inputs.size(); ++i) { aclError acl_err = aclmdlGetFirstAippInfo(m_model_id, i, &aipp_info); if (ACL_ERROR_NONE == acl_err) { switch (aipp_info.inputFormat) { case ACL_YUV420SP_U8: m_aipp_input_format[i] = AippInputFormat::YUV420SP_U8; break; case ACL_RGB888_U8: m_aipp_input_format[i] = AippInputFormat::RGB888_U8; break; default: mgb_throw( MegBrainError, "Unsupported aclAippInputFormat for input %zu. ", i); } } else if ( ACL_ERROR_NOT_STATIC_AIPP == acl_err || ACL_ERROR_GE_AIPP_NOT_EXIST == acl_err) { m_aipp_input_format[i] = AippInputFormat::NO_AIPP; } else { MGB_ATLAS_CHECK(acl_err); } } size_t dynamic_index; auto errcode = aclmdlGetInputIndexByName( m_model_desc, ACL_DYNAMIC_TENSOR_NAME, &dynamic_index); if (errcode == ACL_ERROR_NONE) { aclmdlHW hw_info; MGB_ATLAS_CHECK(aclmdlGetDynamicHW(m_model_desc, dynamic_index, &hw_info)); mgb_assert(hw_info.hwCount == 0, "Currently not support dynamic HW"); } //! dynamic batch size aclmdlBatch acl_batch; MGB_ATLAS_CHECK(aclmdlGetDynamicBatch(m_model_desc, &acl_batch)); if (acl_batch.batchCount) { size_t dynamic_data_size; dynamic_data_size = aclmdlGetInputSizeByIndex(m_model_desc, dynamic_index); m_dyn_batch_tensor = DeviceTensorND( inputs[0]->comp_node(), {{dynamic_data_size}, dtype::Uint8()}); for (size_t i = 0; i < acl_batch.batchCount; ++i) { m_dyn_batch_choices.push_back(static_cast(acl_batch.batch[i])); } std::sort( m_dyn_batch_choices.begin(), m_dyn_batch_choices.end(), std::greater<>()); } //! add output size_t nr_outputs = aclmdlGetNumOutputs(m_model_desc); using F = VarNode::Flag; if (nr_outputs == 1) { add_output(None); } else { for (size_t i = 0; i < nr_outputs; ++i) { add_output(ssprintf("o%zu", i)); } } if (!m_dyn_batch_choices.empty()) { /** * \warning If enable dynamic batchsize, the memory of output * should be the largest be the size with the largest batch_size, so we * set the flag to SYS_MEM_ALLOC. */ for (size_t i = 0; i < nr_outputs; ++i) { output(i)->add_flag(F::NO_SYS_MEM_ALLOC).add_flag(F::NO_MEM_RECLAIM); } } add_equivalence_component>(m_buffer.data()); }; AtlasRuntimeOpr::~AtlasRuntimeOpr() { if (m_is_model_holder) { MGB_ATLAS_CHECK(aclmdlUnload(m_model_id)); MGB_ATLAS_CHECK(aclmdlDestroyDesc(m_model_desc)); } } void AtlasRuntimeOpr::scn_do_execute() { auto&& acl_env = CompNodeEnv::from_comp_node(input(0)->comp_node()).atlas_env(); acl_env.activate(); if (!m_dyn_batch_choices.empty()) { for (size_t i = 0; i < output().size(); i++) { auto output_size = aclmdlGetOutputSizeByIndex(m_model_desc, i); auto ovar = output(i); output_size = std::max( output_size, ovar->dtype().size(ovar->shape().total_nr_elems())); ovar->shape_alloc(ovar->shape(), output_size); } } PtrGetter input_getter(input()); PtrGetter output_getter(output()); bool enable_dynamic_batch = !m_dyn_batch_choices.empty(); size_t nr_inputs = aclmdlGetNumInputs(m_model_desc); size_t nr_outputs = aclmdlGetNumOutputs(m_model_desc); size_t input_batch = input(0)->layout()[0]; if (enable_dynamic_batch) { mgb_assert( nr_inputs == input().size() + 1, "nr inputs got from om model should be one more than got " "from megbrain"); } SmallVector batches_each_run; if (enable_dynamic_batch) { batches_each_run = gen_batch_vec(input_batch, m_dyn_batch_choices); } else { batches_each_run.push_back(input_batch); } for (auto&& batch : batches_each_run) { //! prepare input auto model_inputs = aclmdlCreateDataset(); mgb_assert(model_inputs != nullptr, "failed to create atlas input dataset."); for (size_t i = 0; i < input().size(); i++) { auto value_pair = input_getter.get(batch, i); auto input_size = aclmdlGetInputSizeByIndex(m_model_desc, i); //! FIXME iff enable dynamic batchsize and dynamic aipp, the input //! size should be the size of aclmdlGetInputSizeByIndex. if (enable_dynamic_batch) { mgb_assert( input_size == value_pair.second / batch * m_dyn_batch_choices[0], "input %zu size mismatch, expected: %zu got: %zu", i, input_size, value_pair.second / batch * m_dyn_batch_choices[0]); } aclDataBuffer* input_db = aclCreateDataBuffer(value_pair.first, value_pair.second); mgb_assert( input_db != nullptr, "failed to create atlas input data buffer for input " "%zu:%s.", i, input(i)->cname()); aclmdlAddDatasetBuffer(model_inputs, input_db); } //! append unit tensor for dynamic batch if (enable_dynamic_batch) { aclDataBuffer* input_db = aclCreateDataBuffer( reinterpret_cast(m_dyn_batch_tensor.raw_ptr()), m_dyn_batch_tensor.layout().span().dist_byte()); mgb_assert( input_db != nullptr, "failed to create atlas input data buffer for dynamic " "batch tensor."); MGB_ATLAS_CHECK(aclmdlAddDatasetBuffer(model_inputs, input_db)); MGB_ATLAS_CHECK(aclmdlSetDynamicBatchSize( m_model_id, model_inputs, input().size(), static_cast(batch))); } //! prepare output auto model_outputs = aclmdlCreateDataset(); mgb_assert(model_outputs != nullptr, "failed to create atlas output dataset."); for (size_t i = 0; i < nr_outputs; i++) { auto value_pair = output_getter.get(batch, i); size_t output_size = value_pair.second; if (enable_dynamic_batch) { output_size = aclmdlGetOutputSizeByIndex(m_model_desc, i); } aclDataBuffer* output_db = aclCreateDataBuffer(value_pair.first, output_size); mgb_assert( output_db != nullptr, "failed to create atlas output data buffer for output " "%zu:%s.", i, output(i)->cname()); aclmdlAddDatasetBuffer(model_outputs, output_db); } MGB_ATLAS_CHECK(aclmdlExecute(m_model_id, model_inputs, model_outputs)); for (size_t i = 0; i < nr_inputs; ++i) { aclDataBuffer* db_ptr = aclmdlGetDatasetBuffer(model_inputs, i); MGB_ATLAS_CHECK(aclDestroyDataBuffer(db_ptr)); } for (size_t i = 0; i < nr_outputs; ++i) { aclDataBuffer* db_ptr = aclmdlGetDatasetBuffer(model_outputs, i); MGB_ATLAS_CHECK(aclDestroyDataBuffer(db_ptr)); } MGB_ATLAS_CHECK(aclmdlDestroyDataset(model_inputs)); MGB_ATLAS_CHECK(aclmdlDestroyDataset(model_outputs)); } } void AtlasRuntimeOpr::get_output_var_shape( const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const { size_t nr_inputs = aclmdlGetNumInputs(m_model_desc); size_t batch_size = inp_shape[0][0]; //! enable dynamic batchsize if (!m_dyn_batch_choices.empty()) { mgb_assert(!gen_batch_vec(batch_size, m_dyn_batch_choices).empty()); mgb_assert( nr_inputs == inp_shape.size() + 1, "nr inputs got from om model should be one more than got " "from megbrain"); } for (size_t i = 0; i < inp_shape.size(); ++i) { aclmdlIODims input_dims; MGB_ATLAS_CHECK(aclmdlGetInputDimsV2(m_model_desc, i, &input_dims)); auto om_format = aclmdlGetInputFormat(m_model_desc, i); TensorShape shape_from_om = acl_shape_to_mgb_shape_for_input( input_dims, batch_size, !m_dyn_batch_choices.empty(), om_format, m_aipp_input_format[i]); mgb_assert( shape_from_om.eq_shape(inp_shape[i]), "shape mismatch of input %zu, expected: %s got: %s", i, shape_from_om.to_string().c_str(), inp_shape[i].to_string().c_str()); } for (size_t i = 0; i < out_shape.size(); ++i) { aclmdlIODims output_dims; MGB_ATLAS_CHECK(aclmdlGetOutputDims(m_model_desc, i, &output_dims)); out_shape[i] = acl_shape_to_mgb_shape_for_output(output_dims, batch_size); } } void AtlasRuntimeOpr::add_input_layout_constraint() { //! default contiguous for (auto i : input()) { i->add_layout_constraint_contiguous(); } } void AtlasRuntimeOpr::init_output_dtype() { DType dt_acl, dt_input; for (size_t i = 0; i < input().size(); ++i) { dt_acl = acl_dtype_to_mgb_dtype(aclmdlGetInputDataType(m_model_desc, i)); dt_input = input(i)->dtype(); mgb_assert( dt_acl.valid() && dt_input.valid() && dt_acl.enumv() == dt_input.enumv(), "dtype mismatch of input %zu: expected %s, " "got %s", i, dt_acl.name(), dt_input.name()); } for (size_t i = 0; i < output().size(); ++i) { dt_acl = acl_dtype_to_mgb_dtype(aclmdlGetOutputDataType(m_model_desc, i)); mgb_assert( dt_acl.valid(), "output dtype checking failed: invalid dtype returned."); if (dt_acl.enumv() == DTypeEnum::QuantizedS8) { mgb_assert( output(i)->dtype().valid(), "user should specify scale of output tensor of " "AtlasRuntimeOpr."); } if (!output(i)->dtype().valid()) output(i)->dtype(dt_acl); } } SymbolVarArray AtlasRuntimeOpr::make( SharedBuffer buf, const SymbolVarArray& src, const OperatorNodeConfig& config) { VarNodeArray var_node_array = cg::to_var_node_array(src); auto atlas_runtime_opr = std::make_unique( std::move(buf), std::pair{INVALID_MODEL_ID, nullptr}, var_node_array, config); auto ret = cg::to_symbol_var_array(src[0].node() ->owner_graph() ->insert_opr(std::move(atlas_runtime_opr)) ->output()); return ret; } SymbolVarArray AtlasRuntimeOpr::make( const void* buf, size_t size, const SymbolVarArray& src, const OperatorNodeConfig& config) { mgb_throw_if( !CompNode::get_device_count(CompNode::DeviceType::ATLAS), SystemError, "can not create AtlasRuntimeOpr when atlas is not " "available"); std::shared_ptr shptr{new uint8_t[size], [](uint8_t* p) { delete[] p; }}; memcpy(shptr.get(), buf, size); SharedBuffer buffer{std::move(shptr), size}; return make(std::move(buffer), src, config); } SymbolVarArray AtlasRuntimeOpr::make( const SharedBuffer buf, const std::pair& model, const SymbolVarArray& src, const OperatorNodeConfig& config) { VarNodeArray var_node_array = cg::to_var_node_array(src); auto atlas_runtime_opr = std::make_unique(buf, model, var_node_array, config); auto ret = cg::to_symbol_var_array(src[0].node() ->owner_graph() ->insert_opr(std::move(atlas_runtime_opr)) ->output()); return ret; } constexpr uint32_t AtlasRuntimeOpr::INVALID_MODEL_ID; #endif // MGB_atlas // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}