#include "megbrain/opr/blas.h" #include #include "megbrain/comp_node_env.h" #include "megbrain/opr/basic_arith_wrapper.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_gen.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/serialization/serializer.h" #include "megbrain/test/autocheck.h" #include "megbrain/test/helper.h" #include "megbrain/test/megdnn_helper.h" #include "megdnn/algorithm_cache.h" using namespace mgb; namespace { template void brute_force_gemm( size_t M, size_t N, size_t K, bool transa, bool transb, const dt_src* x, const dt_src* y, dt_dst* z) { for (size_t m = 0; m < M; ++m) for (size_t n = 0; n < N; ++n) { dt_dst cur = dt_dst(0); for (size_t k = 0; k < K; ++k) { cur += x[transa ? (k * M + m) : (m * K + k)] * y[transb ? (n * K + k) : (k * N + n)]; } z[m * N + n] = cur; } } float brute_force_dot(const HostTensorND& a, const HostTensorND& b) { auto sz = std::max(a.shape(0), b.shape(0)); size_t ap = 0, bp = 0; float ret = 0; auto pa = a.ptr(), pb = b.ptr(); auto as = a.layout().stride[0], bs = b.layout().stride[0]; if (a.shape(0) != sz) as = 0; if (b.shape(0) != sz) bs = 0; for (size_t i = 0; i < sz; ++i) { ret += pa[ap] * pb[bp]; ap += as; bp += bs; } return ret; } // (m,k) * (k,n) = (m,n) void run_sgemm_test(bool transa, bool transb) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { auto param = opr::MatrixMul::Param{transa, transb}; return {opr::MatrixMul::make(inputs[0], inputs[1], param)}; }; auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) { size_t M, N, K; M = inp[0]->shape().shape[0]; K = inp[0]->shape().shape[1]; if (transa) std::swap(M, K); N = inp[1]->shape().shape[transb ? 0 : 1]; auto z = dest[0].comp_node(inp[0]->comp_node()).resize({M, N}).ptr(); // brute-force gemm brute_force_gemm( M, N, K, transa, transb, inp[0]->ptr(), inp[1]->ptr(), z); }; auto mkshp = [](bool trans, size_t m, size_t k) { TensorShape rst{m, k}; if (trans) std::swap(rst.shape[0], rst.shape[1]); return rst; }; using namespace std::placeholders; auto mkx = std::bind(mkshp, transa, _1, _2); auto mky = std::bind(mkshp, transb, _1, _2); Checker::RunOptions opt; opt.numdiff_eps = 1; Checker(make_graph, fwd) .run({mkx(4, 6), mky(6, 2)}, opt) .run({mkx(2, 3), mky(3, 100)}, opt) .run({mkx(20, 3), mky(3, 20)}, opt) .run({mkx(10, 0), mky(0, 10)}, opt) .run({mkx(0, 0), mky(0, 0)}, opt); } #define FWD_BATCH_GEMM(dt_src, dt_dst) \ [transa, transb](Checker::NumOutArray& dest, Checker::NumInpArray inp) { \ bool ta(transa), tb(transb); \ HostTensorND a, b; \ size_t B, M, N, K; \ a.copy_from(*(inp[0])); \ b.copy_from(*(inp[1])); \ B = a.shape().shape[0]; \ M = a.shape().shape[1]; \ K = a.shape().shape[2]; \ N = b.shape().shape[tb ? 1 : 2]; \ if (ta) \ std::swap(M, K); \ auto x = a.ptr(), y = b.ptr(); \ auto z = dest[0].resize({B, M, N}).ptr(); \ for (size_t b = 0; b < B; ++b) { \ brute_force_gemm( \ M, N, K, ta, tb, x + b * M * K, y + b * K * N, z + b * M * N); \ } \ } void run_batched_sgemm_test(bool transa, bool transb) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::BatchedMatrixMul::make(inputs[0], inputs[1], {transa, transb})}; }; auto fwd = FWD_BATCH_GEMM(float, float); auto mkshp = [](bool trans, size_t b, size_t m, size_t k) { TensorShape rst{b, m, k}; if (trans) std::swap(rst.shape[1], rst.shape[2]); return rst; }; using namespace std::placeholders; auto mkx = std::bind(mkshp, transa, _1, _2, _3); auto mky = std::bind(mkshp, transb, _1, _2, _3); Checker::RunOptions opt; opt.numdiff_eps = 1; Checker(make_graph, fwd) .run({mkx(3, 5, 7), mky(3, 7, 2)}, opt) .run({mkx(64, 1, 2), mky(64, 2, 1)}, opt) .run({mkx(1, 2, 3), mky(1, 3, 4)}, opt) .run({mkx(3, 0, 2), mky(3, 2, 0)}, opt) .run({mkx(64, 10, 0), mky(64, 0, 10)}, opt); } auto gen_fp16 = [](HostTensorND& dest) { RNGxorshf rng{next_rand_seed()}; auto rand_real = [&rng]() { std::uniform_real_distribution dist(-1, 1); return dist(rng); }; auto ptr = dest.ptr(); size_t elems = dest.shape().total_nr_elems(); for (size_t i = 0; i < elems; i++) { ptr[i] = dt_float16(rand_real()); } }; auto gen_int8 = [](HostTensorND& dest) { HostTensorGenerator int8_generator{ -128, 127}; dest = *int8_generator(dest.shape(), dest.comp_node()); }; void run_batched_hgemm_test(bool transa, bool transb) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::BatchedMatrixMul::make(inputs[0], inputs[1], {transa, transb})}; }; auto fwd = FWD_BATCH_GEMM(dt_float16, dt_float16); auto mkshp = [](bool trans, size_t b, size_t m, size_t k) { TensorShape rst{b, m, k}; if (trans) std::swap(rst.shape[1], rst.shape[2]); return rst; }; using namespace std::placeholders; auto mkx = std::bind(mkshp, transa, _1, _2, _3); auto mky = std::bind(mkshp, transb, _1, _2, _3); Checker checker(make_graph, fwd); Checker::RunOptions opt; opt.outputs_max_err = 1e-2; checker.set_input_dtype(0, dtype::Float16()) .set_input_dtype(1, dtype::Float16()) .set_input_generator(0, gen_fp16) .set_input_generator(1, gen_fp16) .set_input_allow_grad(0, false) .set_input_allow_grad(1, false) .set_output_allow_grad(0, false); checker.run({mkx(3, 5, 7), mky(3, 7, 2)}, opt) .run({mkx(64, 1, 2), mky(64, 2, 1)}, opt) .run({mkx(64, 10, 0), mky(64, 0, 10)}, opt) .run({mkx(1, 2, 3), mky(1, 3, 4)}, opt); } void run_batched_igemm_test(bool transa, bool transb) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::BatchedMatrixMul::make(inputs[0], inputs[1], {transa, transb})}; }; auto fwd = FWD_BATCH_GEMM(int8_t, int32_t); auto mkshp = [](bool trans, size_t b, size_t m, size_t k) { TensorShape rst{b, m, k}; if (trans) std::swap(rst.shape[1], rst.shape[2]); return rst; }; using namespace std::placeholders; auto mkx = std::bind(mkshp, transa, _1, _2, _3); auto mky = std::bind(mkshp, transb, _1, _2, _3); Checker::RunOptions opt; opt.numdiff_eps = 1; Checker checker(make_graph, fwd); checker.set_input_dtype(0, dtype::Int8()) .set_input_dtype(1, dtype::Int8()) .set_input_generator(0, gen_int8) .set_input_generator(1, gen_int8) .set_input_allow_grad(0, false) .set_input_allow_grad(1, false) .set_output_allow_grad(0, false); checker.run({mkx(3, 5, 7), mky(3, 7, 2)}, opt) .run({mkx(64, 1, 2), mky(64, 2, 1)}, opt) .run({mkx(64, 10, 0), mky(64, 0, 10)}, opt) .run({mkx(1, 2, 3), mky(1, 3, 4)}, opt); } template float getter(ctype val) { return val; } template <> float getter(dt_qint32 val) { return (float)val.as_int32(); } template void run_trans_inp_test_case(bool trans_a, bool trans_b) { HostTensorGenerator::dtype> gen; std::shared_ptr host_x = gen({1, 1}), host_y = gen({1, 1}); auto graph = ComputingGraph::make(); auto do_trans = [](SymbolVar x) { return opr::Dimshuffle::make(x, {1, 0}); }; auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Host2DeviceCopy::make(*graph, host_y); if (trans_a) { x = do_trans(x); } if (trans_b) { y = do_trans(y); } OperatorNodeConfig config; if (DTypeTrait::enumv == DTypeEnum::Int16) { config.output_dtype(dtype::Int16()); } auto z = opr::MatrixMul::make(x, y, {}, {}, config); HostTensorND host_z; auto func = graph->compile({make_callback_copy(z, host_z)}); auto run = [&](size_t M, size_t K, size_t N) { *host_x = *(trans_a ? gen({K, M}) : gen({M, K})); *host_y = *(trans_b ? gen({N, K}) : gen({K, N})); func->execute(); ASSERT_EQ(TensorShape({M, N}), host_z.shape()); ASSERT_EQ(!trans_a, x.node()->dev_tensor().layout().is_contiguous()); ASSERT_EQ(!trans_b, y.node()->dev_tensor().layout().is_contiguous()); auto px = host_x->ptr(), py = host_y->ptr(); auto pz = host_z.ptr(); auto make_strd = [](bool trans, int h, int w, int* dst) { if (trans) { dst[0] = 1; dst[1] = h; } else { dst[0] = w; dst[1] = 1; } }; int strd_x[2], strd_y[2]; make_strd(trans_a, M, K, strd_x); make_strd(trans_b, K, N, strd_y); for (size_t i = 0; i < M; ++i) { for (size_t j = 0; j < N; ++j) { dt_dst sum = 0; for (size_t k = 0; k < K; ++k) { dt_dst xv = px[i * strd_x[0] + k * strd_x[1]], yv = py[k * strd_y[0] + j * strd_y[1]]; sum += xv * yv; } MGB_ASSERT_FLOAT_EQ(getter(sum), getter(pz[i * N + j])) << trans_a << ' ' << trans_b; } } }; run(4, 8, 12); run(8, 12, 16); } template void run_trans_inp_test() { for (bool ta : {false, true}) { for (bool tb : {false, true}) { run_trans_inp_test_case(ta, tb); } } } template void inline mul_add(dt_src& a, dt_src& b, dt_dst& c) { c += dt_dst(a) * dt_dst(b); } template <> void inline mul_add(dt_qint8& a, dt_qint8& b, dt_qint32& c) { c += dt_qint32(a.as_int8()) * dt_qint32(b.as_int8()); } template std::shared_ptr bgemm_gen(const TensorShape& shp) { HostTensorGenerator::dtype> gen; return gen(shp); } template <> std::shared_ptr bgemm_gen(const TensorShape& shp) { CompNode cn = CompNode::load("xpu0"); std::shared_ptr ret = std::make_shared(cn, dtype::Float16{}); (*ret).resize(shp); gen_fp16(*ret); return ret; } template void run_bgemm_trans_inp_test_case(bool trans_a, bool trans_b) { std::shared_ptr host_x = bgemm_gen({1, 1, 1}), host_y = bgemm_gen({1, 1, 1}); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Host2DeviceCopy::make(*graph, host_y); trans_a ? (x = opr::Dimshuffle::make(x, {0, 2, 1})) : 0; trans_b ? (y = opr::Dimshuffle::make(y, {0, 2, 1})) : 0; auto z = opr::BatchedMatrixMul::make(x, y, {}, {}, OperatorNodeConfig{}); HostTensorND host_z; auto func = graph->compile({make_callback_copy(z, host_z)}); auto run = [&](size_t B, size_t M, size_t K, size_t N) { *host_x = *( trans_a ? bgemm_gen({B, K, M}) : bgemm_gen({B, M, K})); *host_y = *( trans_b ? bgemm_gen({B, N, K}) : bgemm_gen({B, K, N})); func->execute(); ASSERT_EQ(TensorShape({B, M, N}), host_z.shape()); ASSERT_EQ(!trans_a, x.node()->dev_tensor().layout().is_contiguous()); ASSERT_EQ(!trans_b, y.node()->dev_tensor().layout().is_contiguous()); int strd_x[3], strd_y[3]; auto px = host_x->ptr(), py = host_y->ptr(); auto pz = host_z.ptr(); auto make_strd = [](bool trans, int h, int w, int* dst) { dst[0] = h * w; dst[1] = trans ? 1 : w; dst[2] = trans ? h : 1; }; make_strd(trans_a, M, K, strd_x); make_strd(trans_b, K, N, strd_y); for (size_t b = 0; b < B; ++b) for (size_t i = 0; i < M; ++i) for (size_t j = 0; j < N; ++j) { dt_dst sum = dt_dst(0); for (size_t k = 0; k < K; ++k) { dt_src xv = px[b * strd_x[0] + i * strd_x[1] + k * strd_x[2]], yv = py[b * strd_y[0] + k * strd_y[1] + j * strd_y[2]]; mul_add(xv, yv, sum); } MGB_ASSERT_FLOAT_NEAR( getter(sum), getter(pz[(b * M + i) * N + j]), 5e-3) << trans_a << ' ' << trans_b; } }; run(2, 4, 8, 12); run(2, 8, 12, 16); } } // anonymous namespace TEST(TestOprBlas, MatrixMul_NN) { run_sgemm_test(false, false); } TEST(TestOprBlas, MatrixMul_NT) { run_sgemm_test(false, true); } TEST(TestOprBlas, MatrixMul_TN) { run_sgemm_test(true, false); } TEST(TestOprBlas, MatrixMul_TT) { run_sgemm_test(true, true); } TEST(TestOprDNN, MatrixMulExePolicy) { using Param = opr::MatrixMul::Param; Param param; using Policy = opr::MatrixMul::ExecutionPolicy; using S = Policy::Strategy; auto cn = CompNode::load("cpux"); #if MGB_ENABLE_FASTRUN for (auto strategy : SmallVector{ S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, S::PROFILE | S::HEURISTIC}) { #else for (auto strategy : {S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { #endif auto graph = ComputingGraph::make(); HostTensorGenerator<> gen; auto mkvar = [&](const char* name, const TensorShape& shp) { return opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name); }; auto A = mkvar("A", {32, 64}); auto B = mkvar("B", {64, 32}); Policy policy; policy.strategy = strategy; auto C = opr::MatrixMul::make(A, B, param, policy); HostTensorND host_c; auto func = graph->compile({make_callback_copy(C, host_c)}); func->execute(); } } TEST(TestOprBlas, BatchedMatrixMulFp32_NN) { run_batched_sgemm_test(false, false); } TEST(TestOprBlas, BatchedMatrixMulFp32_NT) { run_batched_sgemm_test(false, true); } TEST(TestOprBlas, BatchedMatrixMulFp32_TN) { run_batched_sgemm_test(true, false); } TEST(TestOprBlas, BatchedMatrixMulFp32_TT) { run_batched_sgemm_test(true, true); } TEST(TestOprBlas, BatchedMatrixMulFp16_NN) { run_batched_hgemm_test(false, false); } TEST(TestOprBlas, BatchedMatrixMulFp16_NT) { run_batched_hgemm_test(false, true); } TEST(TestOprBlas, BatchedMatrixMulFp16_TN) { run_batched_hgemm_test(true, false); } TEST(TestOprBlas, BatchedMatrixMulFp16_TT) { run_batched_hgemm_test(true, true); } TEST(TestOprBlas, BatchedMatrixMulInt8_NN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_batched_igemm_test(false, false); } TEST(TestOprBlas, BatchedMatrixMulInt8_NT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_batched_igemm_test(false, true); } TEST(TestOprBlas, BatchedMatrixMulInt8_TN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_batched_igemm_test(true, false); } TEST(TestOprBlas, BatchedMatrixMulInt8_TT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_batched_igemm_test(true, true); } TEST(TestOprBlas, TransBatchedMatrixMulFp32_NN) { run_bgemm_trans_inp_test_case(false, false); } TEST(TestOprBlas, TransBatchedMatrixMulFp32_NT) { run_bgemm_trans_inp_test_case(false, true); } TEST(TestOprBlas, TransBatchedMatrixMulFp32_TN) { run_bgemm_trans_inp_test_case(true, false); } TEST(TestOprBlas, TransBatchedMatrixMulFp32_TT) { run_bgemm_trans_inp_test_case(true, true); } TEST(TestOprBlas, TransBatchedMatrixMulInt8_NN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(false, false); } TEST(TestOprBlas, TransBatchedMatrixMulInt8_NT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(false, true); } TEST(TestOprBlas, TransBatchedMatrixMulInt8_TN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(true, false); } TEST(TestOprBlas, TransBatchedMatrixMulInt8_TT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(true, true); } TEST(TestOprBlas, TransBatchedMatrixMulFp16_NN) { run_bgemm_trans_inp_test_case(false, false); } TEST(TestOprBlas, TransBatchedMatrixMulFp16_NT) { run_bgemm_trans_inp_test_case(false, true); } TEST(TestOprBlas, TransBatchedMatrixMulFp16_TN) { run_bgemm_trans_inp_test_case(true, false); } TEST(TestOprBlas, TransBatchedMatrixMulFp16_TT) { run_bgemm_trans_inp_test_case(true, true); } TEST(TestOprBlas, TransBatchedMatrixMulQS8_NN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(false, false); } TEST(TestOprBlas, TransBatchedMatrixMulQS8_NT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(false, true); } TEST(TestOprBlas, TransBatchedMatrixMulQS8_TN) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(true, false); } TEST(TestOprBlas, TransBatchedMatrixMulQS8_TT) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_bgemm_trans_inp_test_case(true, true); } TEST(TestOprBlas, DotBasic) { HostTensorGenerator<> gen; auto host_x = gen({123}), host_y = gen({123}); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Host2DeviceCopy::make(*graph, host_y), z = opr::Dot::make(x, y); HostTensorND host_z; auto func = graph->compile({make_callback_copy(z, host_z)}); func->execute(); MGB_ASSERT_FLOAT_EQ(brute_force_dot(*host_x, *host_y), *host_z.ptr()); } TEST(TestOprBlas, Dot) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::Dot::make(inputs[0], inputs[1])}; }; auto fwd = [](Checker::NumOutArray& dest, Checker::NumInpArray inp) { auto &&i0 = *inp[0], &&i1 = *inp[1]; auto&& out = dest[0].resize({1}); *out.ptr() = brute_force_dot(i0, i1); }; Checker(make_graph, fwd) .run({TensorShape{15}, TensorShape{1}}) .run({TensorShape{1}, TensorShape{16}}) .run({TensorShape{23}, TensorShape{23}}) .run({TensorShape{1000}, TensorShape{1000}}) .run({TensorShape{0}, TensorShape{0}}); } TEST(TestOprBlas, Cross) { using Checker = AutoOprChecker<2, 1>; auto nopr = megdnn_naive_handle()->create_operator(); nopr->param() = {-1, -1, -1}; auto make_graph = [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::Cross::make(inputs[0], inputs[1], {-1, -1, -1})}; }; auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) { auto &&a = *inp[0], &&b = *inp[1]; dest[0].resize(a.shape()); nopr->exec(a.as_megdnn(), b.as_megdnn(), dest[0].as_megdnn(), {}); }; Checker(make_graph, fwd) .run({TensorShape{3}, TensorShape{3}}) .run({TensorShape{6, 3}, TensorShape{6, 3}}) .run({TensorShape{2, 4, 3}, TensorShape{2, 4, 3}}) .run({TensorShape{2, 5, 2, 3}, TensorShape{2, 5, 2, 3}}); } TEST(TestOprBlas, TransMatMul) { run_trans_inp_test(); } TEST(TestOprBlas, TransMatMul8x8x16) { if (CompNode::load("xpux").device_type() != CompNode::DeviceType::CUDA) { run_trans_inp_test(); } else { printf("testcase skipped on unsupported arch\n"); } } TEST(TestOprBlas, TransMatMul8x8x32) { if (CompNode::load("xpux").device_type() == CompNode::DeviceType::CUDA && !check_compute_capability(6, 1)) { return; } run_trans_inp_test(); } TEST(TestOprBlas, NonContigMatmul) { using Checker = AutoOprChecker<2, 1>; auto make_graph = [](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { using Ad = opr::Subtensor::AxisIndexer; auto x = inputs[0], xsub = opr::Subtensor::make( x, {Ad::make_interval(0, None, None, x.make_scalar(2))}), y = inputs[1], ysub = opr::Subtensor::make( y, {Ad::make_interval(1, None, None, x.make_scalar(3))}); return {opr::MatrixMul::make(xsub, ysub)}; }; auto fwd = [](Checker::NumOutArray& dest, Checker::NumInpArray inp) { auto &&shp0 = inp[0]->shape(), &&shp1 = inp[1]->shape(); size_t m = (shp0.shape[0] + 1) / 2, k = shp0.shape[1], n = (shp1.shape[1] + 2) / 3; auto dptr = dest[0].resize({m, n}).ptr(); memset(dptr, 0, sizeof(float) * m * n); for (size_t i = 0; i < m; ++i) { auto ptr_a = inp[0]->ptr({i * 2}), ptr_c = dest[0].ptr({i}); for (size_t kk = 0; kk < k; ++kk) { auto va = ptr_a[kk]; auto ptr_b = inp[1]->ptr({kk}); for (size_t j = 0; j < n; ++j) { ptr_c[j] += va * ptr_b[j * 3]; } } } }; Checker(make_graph, fwd) .run({TensorShape{2, 1}, TensorShape{1, 3}}) .run({TensorShape{5, 2}, TensorShape{2, 6}}) .run({TensorShape{6, 3}, TensorShape{3, 8}}); } TEST(TestOprBlas, MatrixInverse) { using Checker = AutoOprChecker<1, 1>; auto make_graph = [=](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { return {opr::MatrixInverse::make(inputs[0])}; }; auto fwd = [=](Checker::NumOutArray& dest, Checker::NumInpArray inp) { auto opr = megdnn_naive_handle()->create_operator(); auto wk_size = opr->get_workspace_in_bytes(inp[0]->layout(), inp[0]->layout()); std::unique_ptr wk{new dt_byte[wk_size]}; opr->exec( inp[0]->as_megdnn(), dest[0].resize(inp[0]->shape()).as_megdnn(), {wk.get(), wk_size}); }; // ensure low condition number for generated matrices auto input_coord = [](const Checker::NumInpArray& inp) { auto shp = inp[0]->shape(); size_t n = shp[shp.ndim - 1]; size_t batch = 1; for (size_t i = 0; i < shp.ndim - 2; ++i) { batch *= shp[i]; } std::vector perm(n); for (size_t i = 0; i < n; ++i) { perm[i] = i; } auto ptr = inp[0]->ptr(); for (size_t i = 0; i < batch; ++i, ptr += n * n) { #if __cplusplus >= 201703L std::default_random_engine rng_engine; std::shuffle(perm.begin(), perm.end(), rng_engine); #else std::random_shuffle(perm.begin(), perm.end()); #endif for (size_t j = 0; j < n; ++j) { ptr[j * n + perm[j]] += 5; } } }; Checker{make_graph, fwd} .set_input_coordinator(input_coord) .run({TensorShape{5, 5}}) .run({TensorShape{2, 5, 5}}) .run({TensorShape{2, 6, 3, 3}}); } namespace { void gen_svd_input(HostTensorND& dest) { auto ptr = dest.ptr(); auto dim = dest.layout().ndim; size_t n = dest.layout().shape[dim - 2], m = dest.layout().shape[dim - 1]; size_t j = 0, k = 0; float batch_off = 0; float max_val = std::min(m, n) * std::min(m, n) + 0.99; for (size_t i = 0, it = dest.layout().total_nr_elems(); i < it; ++i) { if (i % (n * m) == 0) { batch_off += 0.32; j = k = 0; } if (!((i % (n * m)) % (m + 1))) ptr[i] = (j++) + ((++k / 10.0)); else ptr[i] = (j++); ptr[i] += batch_off; ptr[i] = std::fmod(ptr[i], max_val); } } template void run_svd_empty_grad_test() { using Checker = AutoOprChecker<1, have_u + have_s + have_v>; auto make_graph = [=](const typename Checker::SymInpArray& inputs) { auto out = opr::SVD::make(inputs[0], opr::SVD::Param{false, true}); typename Checker::SymOutArray ret; int idx = 0; if (have_u) { ret[idx++] = out[0]; } if (have_s) { ret[idx++] = out[1]; } if (have_v) { ret[idx++] = out[2]; } return ret; }; auto fwd = [=](typename Checker::NumOutArray& dest, typename Checker::NumInpArray inp) { auto opr = megdnn_naive_handle()->create_operator(); opr->param().compute_uv = true; TensorLayout ul, sl, vtl; opr->deduce_layout(inp[0]->layout(), ul, sl, vtl); HostTensorND tmp_u{dest[0].comp_node(), ul}, tmp_s{dest[0].comp_node(), sl}, tmp_v{dest[0].comp_node(), vtl}; auto wk_size = opr->get_workspace_in_bytes(inp[0]->layout(), ul, sl, vtl); auto wk = std::make_unique(wk_size); auto out0 = tmp_u.as_megdnn(), out1 = tmp_s.as_megdnn(), out2 = tmp_v.as_megdnn(); int idx = 0; if (have_u) { out0 = dest[idx++].resize(ul).as_megdnn(); } if (have_s) { out1 = dest[idx++].resize(sl).as_megdnn(); } if (have_v) { out2 = dest[idx++].resize(vtl).as_megdnn(); } opr->exec(inp[0]->as_megdnn(), out0, out1, out2, {wk.get(), wk_size}); }; Checker checker{make_graph, fwd}; checker.set_input_generator(0, gen_svd_input); if (have_u) { checker.set_output_allow_check(0, false); } if (have_v) { checker.set_output_allow_check(have_u + have_s, false); } checker.run({TensorShape{3, 3}}) .run({TensorShape{2, 3, 3}}) .run({TensorShape{2, 4, 2}}) .run({TensorShape{3, 1, 2, 4}}) .run({TensorShape{2, 3, 2, 3}}); } } // anonymous namespace TEST(TestOprBlas, SingularValueDecomposition) { using Checker = AutoOprChecker<1, 3>; auto make_graph = [=](const Checker::SymInpArray& inputs) -> Checker::SymOutArray { auto out = opr::SVD::make(inputs[0], opr::SVD::Param{false, true}); return {out[0], out[1], out[2]}; }; auto fwd = [=](Checker::NumOutArray& dest, Checker::NumInpArray inp) { auto opr = megdnn_naive_handle()->create_operator(); opr->param().compute_uv = true; TensorLayout ul, sl, vtl; opr->deduce_layout(inp[0]->layout(), ul, sl, vtl); auto wk_size = opr->get_workspace_in_bytes(inp[0]->layout(), ul, sl, vtl); auto wk = std::make_unique(wk_size); opr->exec( inp[0]->as_megdnn(), dest[0].resize(ul).as_megdnn(), dest[1].resize(sl).as_megdnn(), dest[2].resize(vtl).as_megdnn(), {wk.get(), wk_size}); }; Checker{make_graph, fwd} .set_input_generator(0, gen_svd_input) .set_output_allow_check(0, false) .set_output_allow_check(2, false) .run({TensorShape{3, 3}}) .run({TensorShape{2, 3, 3}}) .run({TensorShape{2, 4, 2}}) .run({TensorShape{3, 1, 2, 4}}) .run({TensorShape{2, 3, 2, 3}}); } TEST(TestOprBlas, SingularValueDecompositionZeroGrad) { run_svd_empty_grad_test<0, 0, 1>(); run_svd_empty_grad_test<0, 1, 0>(); run_svd_empty_grad_test<0, 1, 1>(); run_svd_empty_grad_test<1, 0, 0>(); run_svd_empty_grad_test<1, 0, 1>(); run_svd_empty_grad_test<1, 1, 0>(); run_svd_empty_grad_test<1, 1, 1>(); } #if MGB_ENABLE_FASTRUN TEST(TestOprBlas, MatrixMulExePolicy) { using Param = opr::MatrixMul::Param; Param param; using Policy = opr::MatrixMul::ExecutionPolicy; using S = Policy::Strategy; Policy policy; policy.strategy = S::PROFILE; auto cn = CompNode::load("cpux"); int nr_get = 0; auto on_get = [&nr_get]( const std::string&, const void*, size_t, const void*, size_t) { ++nr_get; }; PersistentCacheHook cache_hook{on_get}; auto graph = ComputingGraph::make(); HostTensorGenerator<> gen; auto mkvar = [&](const char* name, const TensorShape& shp) { return opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name); }; auto a = mkvar("a", {20, 50}); auto b = mkvar("b", {50, 40}); auto matmul = opr::MatrixMul::make(a, b, param, policy, {}); HostTensorND host_y; graph->options().no_profiling_on_shape_change = true; auto func = graph->compile({make_callback_copy(matmul, host_y)}); func->execute(); ASSERT_EQ(nr_get, 0); megdnn::AlgorithmCache::instance().clear(); graph->options().no_profiling_on_shape_change = false; func = graph->compile({make_callback_copy(matmul, host_y)}); func->execute(); ASSERT_GT(nr_get, 0); } #endif #if MGB_ENABLE_FBS_SERIALIZATION TEST(TestOprDNN, MatrixMulSerialization) { using namespace serialization; auto fname = output_file("MatrixMulSerializationTest"); auto dump = [&]() { opr::MatrixMul::Param param; auto cn = CompNode::load("cpu0"); auto graph = ComputingGraph::make(); HostTensorND a_host{cn, {24, 24}, dtype::Float32()}; HostTensorND b_host{cn, {24, 24}, dtype::Float32()}; auto a = opr::ImmutableTensor::make(*graph, a_host); auto b = opr::ImmutableTensor::make(*graph, b_host); auto opr = opr::MatrixMul::make(a, b, param, {}); auto dumper = GraphDumper::make( OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = dumper->dump({opr}); ASSERT_EQ(rst.outputs.size(), 1u); }; auto load = [&]() { auto loader = GraphLoader::make( InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(rst.output_var_list.size(), 1u); auto opr = rst.output_var_list[0].node()->owner_opr(); ASSERT_TRUE(opr->same_type()); }; dump(); load(); } #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} //