/** * \file src/plugin/impl/opr_footprint.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/plugin/opr_footprint.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/dnn/images2neibs.h" #include "megbrain/opr/dnn/local.h" #include "megbrain/opr/dnn/lrn.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_manip.h" #if MGB_ENABLE_JSON #include "megdnn/opr_param_json.h" #endif #include "megbrain/utils/hash_ct.h" #include "midout.h" MIDOUT_DECL(megbrain_opr_footprint) #define MIDOUT_B(...) \ MIDOUT_BEGIN(megbrain_opr_footprint, __VA_ARGS__) { #define MIDOUT_E \ } \ MIDOUT_END(); using namespace mgb; namespace { template uint64_t opr_footprint_func(cg::OperatorNodeBase* opr); // Elemwise template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { return opr->output()[0]->shape().total_nr_elems() * (std::max(opr->input().size(), 2) - 1); } // AddUpdate template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2, "AddUpdate opr should have two inputs"); auto&& out_shape = opr->output()[0]->shape(); return out_shape.total_nr_elems() * 3; } template uint64_t eval_conv_computation(const TensorShape& src_shape, const TensorShape& filter_shape, const TensorShape& dst_shape, cg::OperatorNodeBase* opr) { using Param = opr::ConvolutionForward::Param; auto&& param = opr->cast_final_safe().param(); if (param.format == Param::Format::NHWCD4) { size_t fh, fw; size_t group = 1; if (param.sparse == Param::Sparse::DENSE) { fh = filter_shape[1]; fw = filter_shape[2]; group = 1; } else { // chanwise conv mgb_assert(param.sparse == Param::Sparse::GROUP); fh = filter_shape[2]; fw = filter_shape[3]; group = filter_shape[0]; if (filter_shape.ndim == 5) { group *= 4; } } return dst_shape.total_nr_elems() * fh * fw * src_shape[2] * 4 / group * 2; } auto eval_conv_computation_nchwx = [¶m, &src_shape, &filter_shape, &dst_shape]() -> uint64_t { size_t fh, fw; bool hybird_nchwx = false; size_t group = 1; if (param.sparse == Param::Sparse::DENSE) { //! if nchwxx mode src is nchw output is nchwxx if (dst_shape.ndim == 5 && src_shape.ndim == 4) { fh = filter_shape[1]; fw = filter_shape[2]; hybird_nchwx = true; } else { fh = filter_shape[2]; fw = filter_shape[3]; } group = 1; } else { mgb_assert(param.sparse == Param::Sparse::GROUP); fh = filter_shape[3]; fw = filter_shape[4]; group = filter_shape[0]; } if (param.format == Param::Format::NCHW88) { //! if channel wise weight layout is {group/8, FH, FW, 1, 1, 8} if (filter_shape[1] == 1 && filter_shape[2] == 1) { group *= 8; } size_t computation = dst_shape.total_nr_elems() * fh * fw * src_shape[1] / group * 2; return hybird_nchwx ? computation : computation * 8; } if (param.format == Param::Format::NCHW44 || param.format == Param::Format::NCHW44_DOT) { //! if channel wise weight layout is {group/4, FH, FW, 1, 1, 4} if (filter_shape[1] == 1 && filter_shape[2] == 1) { group *= 4; } size_t computation = dst_shape.total_nr_elems() * fh * fw * src_shape[1] / group * 2; return hybird_nchwx ? computation : computation * 4; } if (param.format == Param::Format::NCHW32) { return dst_shape.total_nr_elems() * fh * fw * src_shape[1] * 32 / group * 2; } mgb_assert(param.format == Param::Format::NCHW4 || param.format == Param::Format::NCHW4_NCHW || param.format == Param::Format::NCHW4_NCHW32, "format should be NCHW4/NCHW4_NCHW/NCHW4_NCHW32"); return dst_shape.total_nr_elems() * fh * fw * src_shape[1] * 4 / group * 2; }; auto eval_conv_computation_chwn4 = [¶m, &src_shape, &filter_shape, &dst_shape]() -> uint64_t { size_t fh, fw; size_t group = 1; if (param.sparse == Param::Sparse::DENSE) { fh = filter_shape[1]; fw = filter_shape[2]; group = 1; } else { mgb_assert(param.sparse == Param::Sparse::GROUP); fh = filter_shape[2]; fw = filter_shape[3]; group = filter_shape[0]; } return dst_shape.total_nr_elems() * fh * fw * src_shape[0] * 4 / group * 2; }; if (param.format == Param::Format::NCHW4 || param.format == Param::Format::NCHW4_NCHW || param.format == Param::Format::NCHW4_NCHW32 || param.format == Param::Format::NCHW88 || param.format == Param::Format::NCHW44 || param.format == Param::Format::NCHW44_DOT || param.format == Param::Format::NCHW32) { return eval_conv_computation_nchwx(); } if (param.format == Param::Format::CHWN4) { return eval_conv_computation_chwn4(); } size_t cpos; size_t spatial_start; size_t group = 1; switch (param.format) { case Param::Format::NCHW: cpos = 1; spatial_start = 2; break; case Param::Format::NHWC: cpos = 3; spatial_start = 1; break; default: mgb_assert(false, "Unknown CONV Param::Format type"); } switch (param.sparse) { case Param::Sparse::DENSE: mgb_assert(filter_shape.ndim == 4 || filter_shape.ndim == 6, "DENSE conv filter shape dimension should be " "4/6(winograd mk4)"); break; case Param::Sparse::GROUP: mgb_assert(filter_shape.ndim == 5 || filter_shape.ndim == 7, "GROUP conv filter shape dimension should be " "5/7(winograd mk4)"); spatial_start++; group = filter_shape[0]; break; default: mgb_assert(false, "Unkown CONV Param::Sparse type"); } uint64_t fh = static_cast(filter_shape[spatial_start]); uint64_t fw = static_cast(filter_shape[spatial_start + 1]); // mul and add are counted as 2 operations return dst_shape.total_nr_elems() * fh * fw * static_cast(src_shape[cpos]) / group * 2; } // ConvolutionForward template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2, "ConvolutionFwd opr should have two inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& src_shape = opr->input()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); return eval_conv_computation( src_shape, filter_shape, out_shape, opr); } template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2 || opr->input().size() == 3 || opr->input().size() == 4, "ConvBiasForward opr should have two/three/four inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& src_shape = opr->input()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); uint64_t res = eval_conv_computation( src_shape, filter_shape, out_shape, opr); if (opr->input().size() == 3) { res += out_shape.total_nr_elems(); } return res; } // ConvolutionBackwardData template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2 || opr->input().size() == 3, "ConvolutionBackwardData opr should have two or three inputs"); auto&& filter_shape = opr->input()[0]->shape(); auto&& diff_shape = opr->input()[1]->shape(); auto&& grad_shape = opr->output()[0]->shape(); return eval_conv_computation( grad_shape, filter_shape, diff_shape, opr); } // ConvolutionBackwardFilter template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 3, "ConvolutionBackwardData opr should have three inputs"); auto&& filter_shape = opr->input()[2]->shape(); auto&& diff_shape = opr->input()[1]->shape(); auto&& src_shape = opr->input()[0]->shape(); return eval_conv_computation( src_shape, filter_shape, diff_shape, opr); } // MatrixMul template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { auto&& mopr = opr->cast_final_safe(); auto &&i0 = opr->input(0)->shape(), &&i1 = opr->input(1)->shape(); mgb_assert(i0.ndim == 2 && i1.ndim == 2); auto m = i0[0], k0 = i0[1], k1 = i1[0], n = i1[1]; if (mopr.param().transposeA) { std::swap(m, k0); } if (mopr.param().transposeB) { std::swap(k1, n); } mgb_assert(k0 == k1); // mul and add are counted as 2 operations return m * k0 * n * 2; } template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2, "LocalShare opr should have two inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& src_shape = opr->input()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); using Param = opr::LocalShareForward::Param; auto&& param = opr->cast_final_safe().param(); mgb_assert(param.format == Param::Format::NCHW); size_t groups = 1; size_t kern_spatial_pos = 3; if (param.sparse == Param::Sparse::GROUP) { groups = filter_shape[0]; kern_spatial_pos = 4; } size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1]; return out_shape.total_nr_elems() * fh * fw * src_shape[1] * 2 / groups; } template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 3, "LocalShareBackwardData opr should have three inputs"); auto&& filter_shape = opr->input()[0]->shape(); auto&& diff_shape = opr->input()[1]->shape(); auto&& grad_shape = opr->output()[0]->shape(); using Param = opr::LocalShareForward::Param; auto&& param = opr->cast_final_safe().param(); mgb_assert(param.format == Param::Format::NCHW); size_t groups = 1; size_t kern_spatial_pos = 3; if (param.sparse == Param::Sparse::GROUP) { groups = filter_shape[0]; kern_spatial_pos = 4; } size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1]; return diff_shape.total_nr_elems() * fh * fw * grad_shape[1] * 2 / groups; } template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 3, "LocalShareBackwardFilter opr should have three inputs"); auto&& src_shape = opr->input()[0]->shape(); auto&& diff_shape = opr->input()[1]->shape(); auto&& grad_shape = opr->output()[0]->shape(); using Param = opr::LocalShareForward::Param; auto&& param = opr->cast_final_safe().param(); mgb_assert(param.format == Param::Format::NCHW); size_t groups = 1; size_t kern_spatial_pos = 3; if (param.sparse == Param::Sparse::GROUP) { groups = grad_shape[0]; kern_spatial_pos = 4; } size_t fh = grad_shape[kern_spatial_pos], fw = grad_shape[kern_spatial_pos + 1]; return diff_shape.total_nr_elems() * fh * fw * src_shape[1] * 2 / groups; } template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 4, "DeformableConvForward opr should have four inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); using Param = opr::DeformableConvForward::Param; auto&& param = opr->cast_final_safe().param(); size_t fh, fw, icpg; mgb_assert(param.format == Param::Format::NCHW); if (param.sparse == Param::Sparse::GROUP) { icpg = filter_shape[2]; fh = filter_shape[3], fw = filter_shape[4]; } else { icpg = filter_shape[1]; fh = filter_shape[2], fw = filter_shape[3]; } //! conv(1 mul), mask(1, mul), accumulate(1 add) return out_shape.total_nr_elems() * fh * fw * icpg * 3; } template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 5, "DeformableConvBackwardFilter opr should have four inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); using Param = opr::DeformableConvBackwardFilter::Param; auto&& param = opr->cast_final_safe().param(); size_t fh, fw, icpg; mgb_assert(param.format == Param::Format::NCHW); if (param.sparse == Param::Sparse::GROUP) { icpg = filter_shape[2]; fh = filter_shape[3], fw = filter_shape[4]; } else { icpg = filter_shape[1]; fh = filter_shape[2], fw = filter_shape[3]; } //! deconv(1 mul), mask(1 mul), accumulate(1 add), bilinear(4 add, 4mul, //! skip) return out_shape.total_nr_elems() * fh * fw * icpg * 3; } template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 5, "DeformableConvBackwardData opr should have four inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); using Param = opr::DeformableConvForward::Param; auto&& param = opr->cast_final_safe().param(); size_t fh, fw, icpg; mgb_assert(param.format == Param::Format::NCHW); if (param.sparse == Param::Sparse::GROUP) { icpg = filter_shape[2]; fh = filter_shape[3], fw = filter_shape[4]; } else { icpg = filter_shape[1]; fh = filter_shape[2], fw = filter_shape[3]; } //! deconv(1 mul), mask(1 mul), accumulate(1 add), grad_weight(1 mul, skip), //! grad_coord(4mul, 4 add) return out_shape.total_nr_elems() * fh * fw * icpg * 12; } template <> uint64_t opr_footprint_func( cg::OperatorNodeBase* opr) { mgb_assert(opr->input().size() == 2 || opr->input().size() == 3 || opr->input().size() == 4, "BatchConvBias opr should have two/three/four inputs"); auto&& out_shape = opr->output()[0]->shape(); auto&& src_shape = opr->input()[0]->shape(); auto&& filter_shape = opr->input()[1]->shape(); using Param = opr::BatchConvBiasForward::Param; auto&& param = opr->cast_final_safe().param(); mgb_assert(param.format == Param::Format::NCHW4); size_t packed_channels = 4; size_t kern_spatial_pos = 3; size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1]; return out_shape.total_nr_elems() * fh * fw * src_shape[1] * packed_channels * 2; } // Pooling template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { auto&& param = opr->cast_final_safe().param(); auto area = param.window_h * param.window_w; return opr->output(0)->shape().total_nr_elems() * area; } // Concat template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { auto&& out_shape = opr->output()[0]->shape(); return out_shape.total_nr_elems(); } // Dimshuffle template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { auto&& out = opr->output()[0]; return out->shape().total_nr_elems(); } // Reduce template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { return opr->input()[0]->shape().total_nr_elems(); } // Host2DeviceCopy template <> uint64_t opr_footprint_func(cg::OperatorNodeBase* opr) { auto&& out_shape = opr->output()[0]->shape(); return out_shape.total_nr_elems(); } /******************* Registe Param Json Functions *************************/ #if MGB_ENABLE_JSON template std::shared_ptr opr_param_json_func(cg::OperatorNodeBase* opr); #define REGISTE_PARAM_JSON_FUNC(cls) \ template <> \ std::shared_ptr opr_param_json_func( \ cg::OperatorNodeBase * opr) { \ return opr::opr_param_to_json( \ opr->cast_final_safe().param()); \ } REGISTE_PARAM_JSON_FUNC(Elemwise) REGISTE_PARAM_JSON_FUNC(ConvolutionForward) REGISTE_PARAM_JSON_FUNC(Convolution3D) REGISTE_PARAM_JSON_FUNC(ConvBiasForward) REGISTE_PARAM_JSON_FUNC(ConvolutionBackwardData) REGISTE_PARAM_JSON_FUNC(Convolution3DBackwardData) REGISTE_PARAM_JSON_FUNC(ConvolutionBackwardFilter) REGISTE_PARAM_JSON_FUNC(MatrixMul) REGISTE_PARAM_JSON_FUNC(BatchedMatrixMul) REGISTE_PARAM_JSON_FUNC(Dot) REGISTE_PARAM_JSON_FUNC(MatrixInverse) REGISTE_PARAM_JSON_FUNC(PoolingForward) REGISTE_PARAM_JSON_FUNC(SVD) REGISTE_PARAM_JSON_FUNC(MaskConvolution) REGISTE_PARAM_JSON_FUNC(Images2Neibs) REGISTE_PARAM_JSON_FUNC(Local) REGISTE_PARAM_JSON_FUNC(GroupLocal) REGISTE_PARAM_JSON_FUNC(LRN) REGISTE_PARAM_JSON_FUNC(Concat) REGISTE_PARAM_JSON_FUNC(Reduce) REGISTE_PARAM_JSON_FUNC(LocalShareForward) REGISTE_PARAM_JSON_FUNC(LocalShareBackwardData) REGISTE_PARAM_JSON_FUNC(LocalShareBackwardFilter) REGISTE_PARAM_JSON_FUNC(DeformableConvForward) REGISTE_PARAM_JSON_FUNC(DeformableConvBackwardFilter) REGISTE_PARAM_JSON_FUNC(DeformableConvBackwardData) REGISTE_PARAM_JSON_FUNC(BatchConvBiasForward) template <> std::shared_ptr opr_param_json_func( cg::OperatorNodeBase * opr) { auto param = opr->cast_final_safe().param(); auto pattern = json::Array::make(); for (size_t i = 0; i < param.pattern_len; i++) pattern->add(json::NumberInt::make(param.pattern[i])); return json::Object::make({ {"ndim", json::NumberInt::make(param.ndim)}, {"pattern", pattern}, }); } template <> std::shared_ptr opr_param_json_func( cg::OperatorNodeBase * opr) { auto param = opr->cast_final_safe().param(); auto desc = json::Array::make(); for (size_t i = 0; i < param.nr_desc; i++) { auto axisdesc = param.desc[i]; desc->add( json::Object::make({ {"method", json::NumberInt::make( static_cast(axisdesc.method))}, {"axisnum", json::NumberInt::make(axisdesc.axis.get_raw())}, })); } return json::Object::make({ {"nr_desc", json::NumberInt::make(param.nr_desc)}, {"desc", desc}, }); } template <> std::shared_ptr opr_param_json_func( cg::OperatorNodeBase * opr) { auto desc = json::Array::make(); auto indices = opr->cast_final_safe().index_desc(); for (auto &index : indices){ desc->add( json::Object::make({ {"axis", json::NumberInt::make(index.axis.get_raw())}, {"begin", json::NumberInt::make(index.begin.node() != nullptr)}, {"end", json::NumberInt::make(index.end.node() != nullptr)}, {"step", json::NumberInt::make(index.step.node() != nullptr)}, {"idx", json::NumberInt::make(index.idx.node() != nullptr)}, })); } return desc; } #endif // MGB_ENABLE_JSON } // namespace template void OprFootprint::add_single_comp_footprint() { MIDOUT_B(OprType, midout_iv(MGB_HASH_STR("OprFootprint::add_single_comp_footprint"))) auto&& record = m_type2comp_footprint.emplace(OprType::typeinfo(), opr_footprint_func); mgb_assert(record.second, "duplicate opr typeinfo"); MIDOUT_E } #if MGB_ENABLE_JSON template void OprFootprint::add_single_param_json() { auto&& record = m_type2param_json.emplace(OprType::typeinfo(), opr_param_json_func); mgb_assert(record.second, "duplicate opr typeinfo"); } #endif void OprFootprint::init_all_footprints() { add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); add_single_comp_footprint(); #if MGB_ENABLE_JSON add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); add_single_param_json(); #endif } OprFootprint::Result OprFootprint::calc_footprint(cg::OperatorNodeBase* opr) { Result rst; auto&& dep_map = opr->node_prop().dep_map(); for (auto&& inp : opr->input()) { if (inp->mem_plan().valid()) rst.inp_layout.push_back(inp->layout()); else rst.inp_layout.push_back({inp->shape(), inp->dtype()}); if (cg::OperatorNodeBase::NodeProp::is_device_value_dep( dep_map.at(inp))) { rst.memory += inp->dtype().size(inp->shape().total_nr_elems()); } } for (auto&& out : opr->output()) { if (out->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) continue; rst.out_shape.push_back(out->shape()); rst.memory += out->dtype().size(out->shape().total_nr_elems()); } rst.computation = get_computation(opr); #if MGB_ENABLE_JSON rst.param = get_param_json(opr); #endif rst.opr_type = opr->dyn_typeinfo(); return rst; } uint64_t OprFootprint::get_computation(cg::OperatorNodeBase* opr) { auto comp_trait = m_type2comp_footprint.find(opr->dyn_typeinfo()); if (comp_trait != m_type2comp_footprint.end()) { return (comp_trait->second)(opr); } return 0; } #if MGB_ENABLE_JSON std::shared_ptr OprFootprint::get_param_json( cg::OperatorNodeBase* opr) { auto param_trait = m_type2param_json.find(opr->dyn_typeinfo()); if (param_trait != m_type2param_json.end()) { return (param_trait->second)(opr); } return json::Object::make(); } std::shared_ptr OprFootprint::Result::to_json() const { using namespace json; std::shared_ptr comp; if (computation) { comp = NumberInt::make(computation); } else { comp = Null::make(); } auto format_shape_arr = [](const TensorShapeArray& arr) { auto ret = Array::make(); for (auto&& shp : arr) { auto cur = Array::make(); for (size_t i = 0; i < shp.ndim; ++i) { cur->add(NumberInt::make(shp[i])); } ret->add(std::move(cur)); } return ret; }; auto format_layout_arr = [](const TensorLayoutArray& arr) -> std::shared_ptr { auto ret = Array::make(); bool have_non_contig = false; for (auto&& item : arr) { if (item.is_contiguous()) { ret->add(json::Null::make()); } else { have_non_contig = true; auto cur = Array::make(); for (size_t i = 0; i < item.ndim; ++i) { cur->add(NumberInt::make(item.stride[i])); } ret->add(std::move(cur)); } } if (!have_non_contig) { ret.reset(); } return ret; }; TensorShapeArray inp_shape; for (auto&& i : inp_layout) inp_shape.push_back(i); auto ret = Object::make({{"computation", std::move(comp)}, {"memory", NumberInt::make(memory)}, {"in_shapes", format_shape_arr(inp_shape)}, {"out_shapes", format_shape_arr(out_shape)}, {"param", param}}); if (auto inp_layout_json = format_layout_arr(inp_layout)) { ret->operator[]("in_layouts") = std::move(inp_layout_json); } return ret; } std::shared_ptr OprFootprint::get_opr_fp_graph_exec( cg::ComputingGraph& graph, const SymbolVarArray& outputs) { OprFootprint m_opr_footprint; ComputingGraph::OutputSpec out_spec; for (auto i : outputs) { out_spec.emplace_back(i, nullptr); } graph.options().allocate_static_mem_after_graph_compile = true; auto async_exec = graph.compile(out_spec); std::vector>> rst_vals; auto on_opr = [&m_opr_footprint, &rst_vals](cg::OperatorNodeBase* opr) { Result trait(m_opr_footprint.calc_footprint(opr)); rst_vals.emplace_back(json::String(opr->id_str()), trait.to_json()); return true; }; async_exec->iter_opr_seq(on_opr); auto opr_fp = json::Object::make(rst_vals); return json::Object::make( {{"opr_footprint", opr_fp}, {"graph_exec", async_exec->to_json()}}); } #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}