/** * \file src/gopt/impl/profiler_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "./opr_format_modifier.h" #include "./utils.h" #include "megbrain/gopt/framework.h" #include "megbrain/gopt/profiler.h" #include "megbrain/graph/event.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/io.h" #include "megbrain/opr/nn_int.h" #include "megbrain/plugin/base.h" #include "megbrain/serialization/sereg.h" using namespace mgb; using namespace cg; using namespace opr; using namespace gopt; using ReformatKey = ReformatManager::ReformatKey; namespace { using OprFormat = Problem::OprFormat; OprFormat tensor_formats_to_opr_format(TensorFormats tensor_format) { switch (tensor_format) { case TensorFormats::NCHW: return OprFormat::NCHW; case TensorFormats::NCHWc4: return OprFormat::NCHW44; case TensorFormats::NCHWc8: return OprFormat::NCHW88; case TensorFormats::NCHWc32: return OprFormat::NCHW32; case TensorFormats::NCHWc64: return OprFormat::NCHW64; case TensorFormats::NHWC: return OprFormat::NHWC; case TensorFormats::CHWNc4: return OprFormat::CHWN4; default: mgb_throw( MegBrainError, "tensor format(%u) is not supported", static_cast(tensor_format)); } } class GraphPartitionProfiler final : public PluginBase { using CompNodeEventPtr = std::unique_ptr; public: using OprFilter = thin_function; struct OprKernEvent { CompNodeEventPtr start, end; }; GraphPartitionProfiler(ComputingGraph* graph, OprFilter opr_filter); ~GraphPartitionProfiler() noexcept; float duration_in_usec() const; private: void record_event(CompNodeEventPtr& dest, CompNode cn) { if (dest == nullptr) dest = cn.create_event(CompNode::Event::NEED_TIMER); dest->record(); } ThinHashMap m_kern_event; OprFilter m_opr_filter; }; GraphPartitionProfiler::GraphPartitionProfiler( ComputingGraph* graph, OprFilter opr_filter) : PluginBase(graph), m_opr_filter(opr_filter) { using namespace event; auto on_before_kern = [this](BeforeKernel const& event) { if (!m_opr_filter(event.opr)) return; auto evptr = &m_kern_event[event.opr].start; record_event(*evptr, event.comp_node); }; auto on_after_kern = [this](AfterKernel const& event) { if (!m_opr_filter(event.opr)) return; auto evptr = &m_kern_event[event.opr].end; record_event(*evptr, event.comp_node); }; auto&& ev = graph->event(); add_event_handler(ev.register_receiver(on_before_kern)); add_event_handler(ev.register_receiver(on_after_kern)); } GraphPartitionProfiler::~GraphPartitionProfiler() noexcept { auto wait = [](const CompNodeEventPtr& ev) { if (ev) ev->host_wait(); }; for (auto&& i : m_kern_event) { wait(i.second.start); wait(i.second.end); } } float GraphPartitionProfiler::duration_in_usec() const { float device_duration = 0.f; for (auto&& kern_ev : m_kern_event) { auto&& event = kern_ev.second; event.end->host_wait(); device_duration += 1e6 * event.start->elapsed_time_until(*event.end); } return device_duration; } /*! * \brief An operator that indicates its input var node is contiguous */ // clang-format off MGB_DEFINE_OPR_CLASS(MarkInputContiguous, SingleCNOperatorNodeBase) //{ void scn_do_execute() override {}; void init_output_static_infer_desc() override; void add_input_layout_constraint() override { input(0)->add_layout_constraint_contiguous(); } public: MarkInputContiguous(VarNode* input, const OperatorNodeConfig& config); static SymbolVar make(SymbolVar input, const OperatorNodeConfig& config = {}); }; // clang-format on MGB_DYN_TYPE_OBJ_FINAL_IMPL(MarkInputContiguous); MarkInputContiguous::MarkInputContiguous( VarNode* input, const OperatorNodeConfig& config) : Super(input->owner_graph(), config, "mark_contiguous", {input}) { add_input({input}); add_output(None); } SymbolVar MarkInputContiguous::make(SymbolVar input, const OperatorNodeConfig& config) { return input.insert_single_output_opr(input.node(), config); } void MarkInputContiguous::init_output_static_infer_desc() { using namespace cg::static_infer; auto&& mgr = owner_graph()->static_infer_manager(); mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0))); } } // namespace /* ================== ProfilerImpl =================*/ ProfilerImpl::ProfilerImpl(int runs, float opr_threshold, float var_node_threshold) : m_opr_threshold{opr_threshold}, m_var_node_threshold{var_node_threshold}, m_runs{runs} { m_opr_filter = [this](const OperatorNodeBase* opr, OperatorNodeBase* new_opr) { /// \note: for the considerations of performance, we skip nchw(naive) /// kernels for conv bias on CUDA platform. to remove this later if (auto conv = try_cast_as_op(new_opr)) { if (conv->output(0)->comp_node().device_type() == CompNode::DeviceType::CUDA && conv->input(0)->dtype().category() == DTypeCategory::QUANTIZED && conv->param().format == OprFormat::NCHW) { return false; } } float comp1 = m_opr_footprint.get_computation(const_cast(opr)); float comp2 = m_opr_footprint.get_computation(new_opr); if (comp2 > m_opr_threshold * comp1) return false; return true; }; m_var_node_filter = [this](const VarNode* var, TensorShape from, TensorShape to, ReformatKey key) { /// \note: due to the alignment requirement of low-bit tensor, we skip /// some layout transform for low-bit tensors. The skipped layout /// transforms do not have corresponding dnn kernel and cannot be /// implemented by tensor manip operators (like reshape, dimshuffle, /// subtensor, etc.). if (var->dtype().enumv() == DTypeEnum::QuantizedS4 || var->dtype().enumv() == DTypeEnum::Quantized4Asymm) { if (key.input_format == TensorFormats::NCHW && key.output_format != TensorFormats::NHWC && key.output_format != TensorFormats::NCHWc64) { return false; } if (key.output_format == TensorFormats::NCHW && key.input_format != TensorFormats::NHWC && key.input_format != TensorFormats::NCHWc64) { return false; } } TensorLayout orig_ly = {var->shape(), var->dtype()}, from_ly = {from, var->dtype()}, to_ly = {to, var->dtype()}; float orig_memory = orig_ly.span().dist_byte() * 2.f; float reformat_memory = from_ly.span().dist_byte() + to_ly.span().dist_byte(); if (reformat_memory > orig_memory * m_var_node_threshold) return false; return true; }; } ProfilerImpl::OperatorNodeRecord ProfilerImpl::profile_operator( const OperatorNodeBase* opr, TensorFormats base_format, const SmallVector& available_tensor_formats, ReformatAttribute extra_attribute) const { OperatorNodeRecord record; record.opr = opr; auto& costs = record.costs; for (auto&& f : available_tensor_formats) { auto opr_format = tensor_formats_to_opr_format(f); costs[opr_format] = profile_operator(opr, base_format, f, extra_attribute); } return record; } float ProfilerImpl::profile_operator( const OperatorNodeBase* opr, TensorFormats base_format, TensorFormats tensor_format, ReformatAttribute extra_attribute) const { auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 0; graph->options().var_sanity_check_first_run = false; VarNodeArray new_inps(opr->input().size()); for (size_t i = 0; i < opr->input().size(); ++i) { auto&& var = opr->input(i); auto&& cn = var->comp_node(); auto&& dtype = var->dtype(); auto dval = std::make_shared(cn, dtype); auto aligned_tensor_shape = ReformatManager::make_aligned_tensor_shape( var, base_format, tensor_format, extra_attribute); dval->resize(aligned_tensor_shape); auto aligned_var = opr::VolatileSharedDeviceTensor::make(*graph, dval); new_inps[i] = aligned_var.node(); } auto new_opr = serialization::copy_opr_shallow( *opr, new_inps, opr->config(), {graph.get()}); if (!m_opr_filter(opr, new_opr)) return PROFILE_TIME_OUT; auto y = new_opr->output(0); auto mark = MarkInputContiguous::make(SymbolVar(y)); auto func = graph->compile({{mark, {}}}); auto filter = [new_opr](OperatorNodeBase* opr) { return opr == new_opr; }; auto profiler = std::make_unique(graph.get(), std::move(filter)); for (int i = 0; i < m_runs; ++i) func->execute(); return profiler->duration_in_usec(); } ProfilerImpl::OperatorNodeRecord ProfilerImpl::profile_operator( const OperatorNodeBase* opr, const OprTensorFormatsConfiguration& base_config, const SmallVector& available_configs, ReformatAttribute extra_attribute) const { OperatorNodeRecord record; record.opr = opr; auto& costs = record.costs; for (auto&& i : available_configs) { costs[i.opr_format] = profile_operator(opr, base_config, i, extra_attribute); } return record; } float ProfilerImpl::profile_operator( const OperatorNodeBase* opr, const OprTensorFormatsConfiguration& base_config, const OprTensorFormatsConfiguration& config, ReformatAttribute extra_attribute) const { auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 0; graph->options().var_sanity_check_first_run = false; VarNodeArray new_inps(opr->input().size()); size_t i = 0; size_t nr_input_tensor = std::min(config.input_tensor_formats.size(), opr->input().size()); for (; i < nr_input_tensor; ++i) { auto&& var = opr->input(i); auto&& cn = var->comp_node(); auto&& dtype = var->dtype(); auto dval = std::make_shared(cn, dtype); TensorShape aligned_shape; if (config.input_tensor_types[i] == TensorType::WEIGHT) { mgb_assert(base_config.input_tensor_types[i] == TensorType::WEIGHT); aligned_shape = ReformatManager::make_aligned_weight_shape( var, base_config.input_tensor_formats[i], config.input_tensor_formats[i], config.output_tensor_formats[0], extra_attribute); } else { mgb_assert( base_config.input_tensor_types[i] == config.input_tensor_types[i]); mgb_assert(base_config.input_tensor_types[i] == TensorType::FEATURE); aligned_shape = ReformatManager::make_aligned_tensor_shape( var, base_config.input_tensor_formats[i], config.input_tensor_formats[i], extra_attribute); } dval->resize(aligned_shape); auto aligned_var = opr::VolatileSharedDeviceTensor::make(*graph, dval); new_inps[i] = aligned_var.node(); } for (; i < opr->input().size(); ++i) { auto&& var = opr->input(i); auto&& cn = var->comp_node(); auto&& dtype = var->dtype(); auto hval = std::make_shared(cn, dtype); hval->resize(var->shape()); auto cb = [&](DeviceTensorND& d) { hval->copy_from(d).sync(); }; { auto cg = var->owner_graph(); cg->compile({{var, cb}})->execute(); } auto imm = opr::ImmutableTensor::make(*graph, *hval); new_inps[i] = imm.node(); } VarNode* y = mgb::gopt::intl::modify_opr_format(config.opr_format, new_inps, opr); #if 0 static const ThinHashSet multi_algo_oprs = { opr::Convolution::typeinfo(), opr::ConvBiasForward::typeinfo(), opr::ConvolutionBackwardData::typeinfo(), opr::PoolingForward::typeinfo(), }; if (multi_algo_oprs.count(opr->dyn_typeinfo()) && !mgb::gopt::intl::has_available_algo(new_inps, y->owner_opr())) return PROFILE_TIME_OUT; #endif if (!m_opr_filter(opr, y->owner_opr())) return PROFILE_TIME_OUT; auto mark = MarkInputContiguous::make(SymbolVar(y)); auto func = graph->compile({{mark, {}}}); auto new_opr = y->owner_opr(); auto filter = [&new_opr](OperatorNodeBase* opr) { return opr == new_opr; }; auto profiler = std::make_unique(graph.get(), std::move(filter)); for (int i = 0; i < m_runs; ++i) func->execute(); return profiler->duration_in_usec(); } ProfilerImpl::VarNodeRecord ProfilerImpl::profile_var_node( const VarNode* var, TensorFormats base_format, const SmallVector& available_tensor_formats, ReformatAttribute attribute) const { VarNodeRecord record; record.var = var; auto& costs = record.costs; for (auto&& i : available_tensor_formats) { for (auto&& o : available_tensor_formats) { if (i == o) continue; ReformatKey key{ i, o, attribute, var->dtype().enumv(), var->dtype().enumv()}; costs[{i, o}] = profile_var_node(var, base_format, key); } } return record; } float ProfilerImpl::profile_var_node( const VarNode* var, TensorFormats base_format, const ReformatKey& key) const { auto&& cn = var->comp_node(); auto&& dtype = var->dtype(); auto dval = std::make_shared(cn, dtype); auto aligned_tensor_shape = ReformatManager::make_aligned_tensor_shape( var, base_format, key.input_format, key.attribute); dval->resize(aligned_tensor_shape); auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 0; graph->options().var_sanity_check_first_run = false; auto aligned_var = opr::VolatileSharedDeviceTensor::make(*graph, dval); auto builder = ReformatManager::instance().auto_aligned_reformat_featrue( var, base_format, key); auto y = builder({aligned_var.node()}); if (!m_var_node_filter(var, aligned_tensor_shape, y->shape(), key)) return PROFILE_TIME_OUT; ThinHashSet set; DepOprIter iter([&set](OperatorNodeBase* opr) { set.insert(opr); }); iter.add(y->owner_opr()); iter.set_visited(aligned_var.node()->owner_opr()); auto mark = MarkInputContiguous::make(SymbolVar(y)); auto func = graph->compile({{mark, {}}}); auto filter = [&set](OperatorNodeBase* opr) { return set.count(opr) > 0; }; auto profiler = std::make_unique(graph.get(), std::move(filter)); for (int i = 0; i < m_runs; ++i) func->execute(); return profiler->duration_in_usec(); } ProfilerImpl::ProfilingResult ProfilerImpl::profile(const Problem& problem) const { ConstVarPropogate cvprop{ConstVarType::IMMUTABLE_AND_PARAM}; { auto cb = [&cvprop](OperatorNodeBase* opr) { cvprop.add_opr(opr); }; DepOprIter iter{cb}; for (auto&& o : problem.graph_partition().output()) { iter.add(o->owner_opr()); } } static const ThinHashMap format_aware_input_tensors = { #define cb(_Opr, _arity) {_Opr::typeinfo(), _arity} cb(Convolution, 2), cb(ConvBiasForward, 4), cb(ConvolutionBackwardData, 2), cb(PoolingForward, 1), cb(WarpPerspective, 1), cb(Resize, 1), #undef cb }; static const ThinHashSet skip_opr_types = { TypeCvt::typeinfo(), Elemwise::typeinfo(), ElemwiseMultiType::typeinfo()}; ThinHashSet vars; ThinHashSet oprs; ThinHashSet skip_oprs; for (auto&& opr : problem.graph_partition().all_oprs()) { if (cvprop.is_const(opr)) continue; bool skip = true; for (auto&& i : opr->input()) { skip &= problem.graph_partition().input().count(i) > 0 || skip_oprs.count(i->owner_opr()) > 0; } auto find = format_aware_input_tensors.find(opr->dyn_typeinfo()); skip &= find == format_aware_input_tensors.end(); if (skip) skip_oprs.insert(opr); oprs.insert(opr); if (find == format_aware_input_tensors.end()) { for (auto&& i : opr->input()) { if (!cvprop.is_const(i)) { vars.insert(i); } } } else { size_t nr_input_tensor = std::min(find->second, opr->input().size()); for (size_t i = 0; i < nr_input_tensor; ++i) { if (!cvprop.is_const(opr->input(i))) { vars.insert(opr->input(i)); } } } for (auto&& ov : opr->usable_output()) { vars.insert(ov); } } auto base_format = problem.base_format(); auto&& available_tensor_formats = problem.available_tensor_formats(); auto&& reformat_attribute = problem.attribute().reformat_attribute; ProfilingResult profiling_result; auto& opr_record = profiling_result.opr_record; auto& var_record = profiling_result.var_record; for (auto&& var : vars) { var_record[var] = profile_var_node( var, base_format, available_tensor_formats, reformat_attribute); } for (auto&& opr : oprs) { auto&& opr_configs = problem.opr_configs(); auto find = opr_configs.find(opr->dyn_typeinfo()); if (find == opr_configs.end()) { if (skip_oprs.count(opr) > 0) { SmallVector tensor_formats = {base_format}; opr_record[opr] = profile_operator( opr, base_format, tensor_formats, reformat_attribute); } else { opr_record[opr] = profile_operator( opr, base_format, available_tensor_formats, reformat_attribute); } } else { auto&& dispatchers = find->second; SmallVector configs; for (const auto& item : dispatchers) { auto config = (*item.second)(opr); if (config.valid()) { configs.emplace_back(config.val()); } } auto base_config = problem.base_config(opr); opr_record[opr] = profile_operator(opr, base_config, configs, reformat_attribute); } } for (auto&& rpair : opr_record) { mgb_log_debug("%s", rpair.second.to_string().c_str()); } for (auto&& rpair : var_record) { mgb_log_debug("%s", rpair.second.to_string().c_str()); } return profiling_result; } /* ================== ProfilerBase =================*/ std::string ProfilerBase::OperatorNodeRecord::to_string() const { auto str = ssprintf( "\nopr type: %s\nopr name: %s\ninputs:\n", opr->dyn_typeinfo()->name, opr->cname()); for (auto&& i : opr->input()) { str += ssprintf( "\tvar: %s\n\tshape: %s\n", i->cname(), i->shape().to_string().c_str()); } str += ssprintf( "outputs:\n\tvar: %s\n\tshape: %s\ncosts:\n", opr->output(0)->cname(), opr->output(0)->shape().to_string().c_str()); for (auto&& cpair : costs) { str += ssprintf( "\tformat: %s; cost:%f", opr_format_to_string(cpair.first), cpair.second); } return str; } std::string ProfilerBase::VarNodeRecord::to_string() const { auto str = ssprintf("\nvar: %s\ncosts:", var->cname()); for (auto&& cpair : costs) { auto&& formats = cpair.first; str += ssprintf( "\n\tformat: (i:%s;o:%s); cost:%f", tensor_formats_to_named_tensor_shape(formats.first).to_string().c_str(), tensor_formats_to_named_tensor_shape(formats.second) .to_string() .c_str(), cpair.second); } return str; } std::unique_ptr ProfilerBase::make_profiler() { return std::make_unique(); } std::unique_ptr ProfilerBase::make_cached_profiler(const char* path) { return std::make_unique(path); } /* ================== CachedProfiler =================*/ CachedProfiler::CachedProfiler( const char* path, int runs, float opr_threshold, float var_node_threshold) : ProfilerImpl(runs, opr_threshold, var_node_threshold), m_path{path} { if (m_path != nullptr) { // file cache ProfilerCache::inst().set_impl(std::make_unique(m_path)); } } CachedProfiler::ProfilingResult CachedProfiler::profile(const Problem& problem) const { auto ret = ProfilerImpl::profile(problem); if (m_path != nullptr) ProfilerCache::inst().dump_cache(m_path); return ret; } float CachedProfiler::profile_operator( const OperatorNodeBase* opr, TensorFormats base_format, TensorFormats tensor_format, ReformatAttribute extra_attribute) const { ProfilerCache::Key key{ opr, tensor_formats_to_opr_format(tensor_format), extra_attribute}; auto ret = ProfilerCache::inst().get(key); if (ret.valid()) return ret.val(); auto rst = ProfilerImpl::profile_operator( opr, base_format, tensor_format, extra_attribute); ProfilerCache::inst().put(key, rst); return rst; } float CachedProfiler::profile_operator( const OperatorNodeBase* opr, const OprTensorFormatsConfiguration& base_config, const OprTensorFormatsConfiguration& config, ReformatAttribute extra_attribute) const { ProfilerCache::Key key{opr, config.opr_format, extra_attribute}; auto ret = ProfilerCache::inst().get(key); if (ret.valid()) return ret.val(); auto rst = ProfilerImpl::profile_operator(opr, base_config, config, extra_attribute); ProfilerCache::inst().put(key, rst); return rst; } float CachedProfiler::profile_var_node( const VarNode* var, TensorFormats base_format, const ReformatKey& key) const { ProfilerCache::Key pf_key{var, key}; auto ret = ProfilerCache::inst().get(pf_key); if (ret.valid()) return ret.val(); auto rst = ProfilerImpl::profile_var_node(var, base_format, key); ProfilerCache::inst().put(pf_key, rst); return rst; } // vim: syntax=cpp.doxygen