# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from io import BytesIO import numpy as np import pytest import megengine as mge import megengine.functional as F from megengine import Parameter, Tensor, tensor from megengine.module import ( BatchNorm1d, BatchNorm2d, Conv1d, Conv2d, Dropout, Linear, MaxPool2d, Module, Sequential, Softmax, ) from megengine.module.module import _access_structure from megengine.quantization.quantize import quantize, quantize_qat from megengine.traced_module import TracedModule, trace_module from megengine.utils.module_utils import get_expand_structure, set_expand_structure class MLP(Module): def __init__(self): super().__init__() self.dense0 = Linear(28, 50) self.dense1 = Linear(50, 20) def forward(self, x): x = self.dense0(x) x = F.relu(x) x = self.dense1(x) return x class MyModule(Module): class InnerModule(Module): def __init__(self): super().__init__() self.bn = BatchNorm2d(4) def forward(self, x): return self.bn(x) def __init__(self): super().__init__() self.i = self.InnerModule() self.bn = BatchNorm2d(4) self.param = Parameter(np.ones(1, dtype=np.float32)) self.buff = Tensor(np.ones(1, dtype=np.float32)) def forward(self, x): x = self.i(x) x = self.bn(x) return x @pytest.mark.parametrize("test_traced_module", [True, False]) def test_module_api(test_traced_module): m = MyModule() if test_traced_module: buff = m.buff param = m.param m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16)))) assert "buff" not in m.__dict__ assert "param" not in m.__dict__ m.buff = buff m.param = param assert list(m.children()) == [m.bn, m.i] assert list(m.named_children()) == [("bn", m.bn), ("i", m.i)] assert list(m.modules()) == [m, m.bn, m.i, m.i.bn] assert list(m.named_modules()) == [ ("", m), ("bn", m.bn), ("i", m.i), ("i.bn", m.i.bn), ] assert list(m.named_modules(prefix="x")) == [ ("x", m), ("x.bn", m.bn), ("x.i", m.i), ("x.i.bn", m.i.bn), ] assert list(m.buffers()) == [ m.bn.running_mean, m.bn.running_var, m.buff, m.i.bn.running_mean, m.i.bn.running_var, ] assert list(m.buffers(recursive=False)) == [m.buff] assert list(m.named_buffers()) == [ ("bn.running_mean", m.bn.running_mean), ("bn.running_var", m.bn.running_var), ("buff", m.buff), ("i.bn.running_mean", m.i.bn.running_mean), ("i.bn.running_var", m.i.bn.running_var), ] assert list(m.parameters()) == [ m.bn.bias, m.bn.weight, m.i.bn.bias, m.i.bn.weight, m.param, ] assert list(m.named_parameters()) == [ ("bn.bias", m.bn.bias), ("bn.weight", m.bn.weight), ("i.bn.bias", m.i.bn.bias), ("i.bn.weight", m.i.bn.weight), ("param", m.param), ] m.eval() assert ( m.training == False and m.bn.training == False and m.i.training == False and m.i.bn.training == False ) m.bn.train() assert m.training == False and m.bn.training == True and m.i.bn.training == False m.eval() m.i.train() assert ( m.training == False and m.bn.training == False and m.i.training == True and m.i.bn.training == True ) m.eval() m.train() assert m.training == True and m.bn.training == True and m.i.bn.training == True def fn(m): m.training = False m.apply(fn) assert m.bn.training == False and m.i.bn.training == False @pytest.mark.parametrize("test_traced_module", [True, False]) def test_module_api_reuse_submodule(test_traced_module): m = MyModule() if test_traced_module: m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16)))) m.h = m.i # pylint: disable=attribute-defined-outside-init assert list(m.modules()) == [m, m.bn, m.i, m.i.bn] assert list(m.named_modules()) == [ ("", m), ("bn", m.bn), ("h", m.i), ("h.bn", m.i.bn), ] @pytest.mark.parametrize("test_traced_module", [True, False]) def test_module_api_iterable_stability(test_traced_module): m = MyModule() if test_traced_module: m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16)))) l = list(m.modules()) for _ in range(100): assert list(m.modules()) == l @pytest.mark.parametrize("test_traced_module", [True, False]) def test_module_api_hooks(test_traced_module): net = MyModule() if test_traced_module: net = trace_module(net, Tensor(np.zeros((1, 4, 1, 1)))) pre_hook_num = 0 post_hook_num = 0 hooks = [] def pre_hook(_, inputs): nonlocal pre_hook_num pre_hook_num += 1 modified_inputs = tuple(inp + 1 for inp in inputs) return modified_inputs def post_hook(_, __, outputs): nonlocal post_hook_num post_hook_num += 1 outputs += 1 return outputs net.apply(lambda module: hooks.append(module.register_forward_pre_hook(pre_hook))) net.apply(lambda module: hooks.append(module.register_forward_hook(post_hook))) shape = (1, 4, 1, 1) x = tensor(np.zeros(shape, dtype=np.float32)) y = net(x) assert pre_hook_num == 4 assert post_hook_num == 4 mean1 = Parameter(np.zeros(shape), dtype=np.float32) bn1 = F.batch_norm( x + 3, mean1, Parameter(np.ones(shape), dtype=np.float32), training=True ) np.testing.assert_allclose( net.i.bn.running_mean.numpy(), mean1.numpy(), ) mean2 = Parameter(np.zeros(shape), dtype=np.float32) bn2 = F.batch_norm( bn1 + 3, mean2, Parameter(np.ones(shape), dtype=np.float32), training=True ) np.testing.assert_allclose( net.bn.running_mean.numpy(), mean2.numpy(), ) np.testing.assert_allclose((bn2 + 2).numpy(), y.numpy()) assert len(hooks) == 8 for handler in hooks: handler.remove() y = net(x) assert pre_hook_num == 4 assert post_hook_num == 4 class MyModule2(Module): class InnerModule(Module): def __init__(self): super().__init__() self.bn = BatchNorm2d(4) self.test_bool_key = {True: 1, False: 0} def forward(self, x): x = self.bn(x) def __init__(self): super().__init__() self.bn = BatchNorm2d(4) self.a = [ BatchNorm2d(4), {"x": BatchNorm2d(4), "y": [BatchNorm2d(4), self.InnerModule()], "z": 0}, (self.InnerModule(),), ] def forward(self, x): return x def test_expand_structure(): m = MyModule2() rst = [ ("", m), ("a.0", m.a[0]), ("a.1.x", m.a[1]["x"]), ("a.1.y.0", m.a[1]["y"][0]), ("a.1.y.1", m.a[1]["y"][1]), ("a.1.y.1.bn", m.a[1]["y"][1].bn), ("a.2.0", m.a[2][0]), ("a.2.0.bn", m.a[2][0].bn), ("bn", m.bn), ] assert list(m.named_modules()) == rst for item in rst[1:]: assert get_expand_structure(m, item[0]) == item[1] for item in reversed(rst[1:]): if _access_structure(m, item[0], lambda p, k, o: isinstance(p, tuple)): continue set_expand_structure(m, item[0], "TEST_VALUE") assert get_expand_structure(m, item[0]) == "TEST_VALUE" def test_flatten_others(): def be_others(obj): return not isinstance(obj, (Tensor, Module)) m = MyModule2() assert len(list(m._flatten(with_key=True, predicate=be_others))) == 0 def test_flatten_with_parent(): m = MyModule2() assert list(m.named_modules(with_parent=True)) == [ ("", m, None), ("a.0", m.a[0], m), ("a.1.x", m.a[1]["x"], m), ("a.1.y.0", m.a[1]["y"][0], m), ("a.1.y.1", m.a[1]["y"][1], m), ("a.1.y.1.bn", m.a[1]["y"][1].bn, m.a[1]["y"][1]), ("a.2.0", m.a[2][0], m), ("a.2.0.bn", m.a[2][0].bn, m.a[2][0]), ("bn", m.bn, m), ] assert list(m.modules(with_parent=True)) == [ (m, None), (m.a[0], m), (m.a[1]["x"], m), (m.a[1]["y"][0], m), (m.a[1]["y"][1], m), (m.a[1]["y"][1].bn, m.a[1]["y"][1]), (m.a[2][0], m), (m.a[2][0].bn, m.a[2][0]), (m.bn, m), ] class MyModule3(Module): class InnerModule(Module): def __init__(self): super().__init__() self.bn = BatchNorm2d(4) def forward(self, x): x = self.bn(x) def __init__(self): super().__init__() self.bn = BatchNorm2d(4) self.seq = Sequential(BatchNorm2d(4), self.InnerModule(),) def forward(self, x): return x def test_module_api_with_sequential(): m = MyModule3() assert list(m.named_modules()) == [ ("", m), ("bn", m.bn), ("seq", m.seq), ("seq.0", m.seq[0]), ("seq.1", m.seq[1]), ("seq.1.bn", m.seq[1].bn), ] def test_sequential_named_children(): modules = OrderedDict() modules["name0"] = Linear(20, 10) modules["name1"] = Linear(10, 5) modules["name2"] = Linear(5, 1) m = Sequential(modules) l = list(m.named_children()) assert l[0][0] == "name0" assert l[1][0] == "name1" assert l[2][0] == "name2" def test_state_dict(): data_shape = (2, 28) data = tensor(np.random.random(data_shape)) mlp = MLP() pred0 = mlp(data) with BytesIO() as fout: mge.save(mlp.state_dict(), fout) fout.seek(0) state_dict = mge.load(fout) state_dict["extra"] = None mlp1 = MLP() mlp1.load_state_dict(state_dict, strict=False) pred1 = mlp1(data) np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6) with pytest.raises(KeyError): mlp1.load_state_dict(state_dict) del state_dict["extra"] del state_dict["dense0.bias"] with pytest.raises(KeyError): mlp1.load_state_dict(state_dict) class AssertModule(Module): def __init__(self): super().__init__() self.error_tensor_key = {True: tensor([]), False: 0} def forward(self, x): return x def test_assert_message(): with pytest.raises( AssertionError, match="keys for Tensor and Module must be str, error key: True" ): m = AssertModule() list(m._flatten()) class Simple(Module): def __init__(self): super().__init__() self.conv0 = Conv2d(1, 1, kernel_size=3, bias=False) self.conv1 = Conv2d(1, 1, kernel_size=3, bias=False) self.conv1.weight = self.conv0.weight def forward(self, inputs): x = self.conv0(inputs) y = self.conv1(inputs) return x + y @pytest.mark.parametrize("test_traced_module", [True, False]) def test_shared_param(test_traced_module): net = Simple() if test_traced_module: net = trace_module(net, tensor(np.random.random((1, 1, 8, 8)))) assert net.conv0.weight is net.conv1.weight data = tensor(np.random.random((1, 1, 8, 8)).astype(np.float32)) np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy()) with BytesIO() as f: mge.save(net, f) f.seek(0) net1 = mge.load(f) assert net1.conv0.weight is net1.conv1.weight np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy()) with BytesIO() as f: mge.save(net.conv0, f) f.seek(0) conv0 = mge.load(f) with BytesIO() as f: mge.save(net.conv1, f) f.seek(0) conv1 = mge.load(f) assert conv0.weight is not conv1.weight np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy()) class Simple2(Module): def __init__(self): super().__init__() self.conv1 = Conv1d(1, 1, kernel_size=3, bias=False) self.conv0 = Conv1d(1, 1, kernel_size=3, bias=False) self.conv1.weight = self.conv0.weight def forward(self, inputs): pass def test_shared_param_1d(): net = Simple2() assert net.conv0.weight is net.conv1.weight data = tensor(np.random.random((1, 1, 8)).astype(np.float32)) np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy()) with BytesIO() as f: mge.save(net, f) f.seek(0) net1 = mge.load(f) assert net1.conv0.weight is net1.conv1.weight np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy()) with BytesIO() as f: mge.save(net.conv0, f) f.seek(0) conv0 = mge.load(f) with BytesIO() as f: mge.save(net.conv1, f) f.seek(0) conv1 = mge.load(f) assert conv0.weight is not conv1.weight np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy()) @pytest.mark.parametrize("test_traced_module", [True, False]) def test_pickle_module(test_traced_module): data_shape = (2, 28) data = tensor(np.random.random(data_shape)) mlp = MLP() pred_gt = mlp(data) if test_traced_module: mlp = trace_module(mlp, data) # pickle before forward with BytesIO() as fout: mge.save(mlp, fout) fout.seek(0) mlp1 = mge.load(fout) if test_traced_module: assert type(mlp1) == TracedModule pred0 = mlp1(data) pred1 = mlp(data) # pickle after forward with BytesIO() as fout: mge.save(mlp, fout) fout.seek(0) mlp1 = mge.load(fout) if test_traced_module: assert type(mlp1) == TracedModule pred2 = mlp1(data) np.testing.assert_allclose(pred_gt.numpy(), pred1.numpy(), atol=5e-6) np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6) np.testing.assert_allclose(pred0.numpy(), pred2.numpy(), atol=5e-6) def test_repr_basic(): # test whether __repr__ can output correct information class ConvModel(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(3, 128, 3, padding=1, bias=False) self.conv2 = Conv2d(3, 128, 3, dilation=2, bias=False) self.bn1 = BatchNorm1d(128) self.bn2 = BatchNorm2d(128) self.pooling = MaxPool2d(kernel_size=2, padding=0) modules = OrderedDict() modules["depthwise"] = Conv2d(256, 256, 3, 1, 0, groups=256, bias=False,) modules["pointwise"] = Conv2d( 256, 256, kernel_size=1, stride=1, padding=0, bias=True, ) self.submodule1 = Sequential(modules) self.list1 = [Dropout(drop_prob=0.1), [Softmax(axis=100)]] self.tuple1 = ( Dropout(drop_prob=0.1), (Softmax(axis=100), Dropout(drop_prob=0.2)), ) self.dict1 = {"Dropout": Dropout(drop_prob=0.1)} self.fc1 = Linear(512, 1024) def forward(self, inputs): pass ground_truth = ( "ConvModel(\n" " (conv1): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n" " (conv2): Conv2d(3, 128, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n" " (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" " (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0)\n" " (submodule1): Sequential(\n" " (depthwise): Conv2d(256, 256, kernel_size=(3, 3), groups=256, bias=False)\n" " (pointwise): Conv2d(256, 256, kernel_size=(1, 1))\n" " )\n" " (list1.0): Dropout(drop_prob=0.1)\n" " (list1.1.0): Softmax(axis=100)\n" " (tuple1.0): Dropout(drop_prob=0.1)\n" " (tuple1.1.0): Softmax(axis=100)\n" " (tuple1.1.1): Dropout(drop_prob=0.2)\n" " (dict1.Dropout): Dropout(drop_prob=0.1)\n" " (fc1): Linear(in_features=512, out_features=1024, bias=True)\n" ")" ) net = ConvModel() output = net.__repr__() assert output == ground_truth def test_repr_module_reassign(): # test whether __repr__ can deal with module reassign class ConvModel1(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(3, 128, 3, bias=False) self.conv2 = Conv2d(3, 128, 3, padding=1, bias=False) self.conv1 = Conv2d(3, 256, 3, dilation=2, bias=False) def forward(self, inputs): pass ground_truth = ( "ConvModel1(\n" " (conv1): Conv2d(3, 256, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n" " (conv2): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n" ")" ) net = ConvModel1() output = net.__repr__() assert output == ground_truth def test_repr_module_rereference(): # test whether __repr__ can deal with module re-reference class ConvModel2(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(3, 128, 3, bias=False) self.conv2 = self.conv1 self.conv3 = self.conv1 def forward(self, inputs): pass ground_truth = ( "ConvModel2(\n" " (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n" " (conv2): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n" " (conv3): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n" ")" ) net = ConvModel2() output = net.__repr__() assert output == ground_truth def test_repr_module_delete(): # test whether __repr__ can deal with module delete class ConvModel3(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(3, 128, 3, bias=False) self.softmax = Softmax(100) def forward(self, inputs): pass ground_truth = ( "ConvModel3(\n" " (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n" ")" ) net = ConvModel3() del net.softmax output = net.__repr__() assert output == ground_truth def test_repr_module_reset_attr(): class ResetAttrModule(Module): def __init__(self, flag): super().__init__() if flag: self.a = None self.a = Linear(3, 5) else: self.a = Linear(3, 5) self.a = None def forward(self, x): if self.a: x = self.a(x) return x ground_truth = [ ( "ResetAttrModule(\n" " (a): Linear(in_features=3, out_features=5, bias=True)\n" ")" ), ("ResetAttrModule()"), ] m0 = ResetAttrModule(True) m1 = ResetAttrModule(False) output = [m0.__repr__(), m1.__repr__()] assert output == ground_truth