/** * \file src/opr/test/basic_arith/elemwise.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./erfinv.h" #include "megbrain/test/autocheck.h" #include "megbrain/test/helper.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/io.h" #include #include using namespace mgb; namespace { using Mode = opr::Elemwise::Mode; using InputGenerator = Maybe>; // msvc would check for callable of None, so we use this to replace None const InputGenerator NONE_INPUT_GEN; std::unordered_set tested_mode; /* ======================= opr special impls ======================= */ float do_mod(float a, float b) { return std::fmod(a, b); } int do_mod(int a, int b) { return a % b; } float do_erfinv(float x) { return erfinvf(x); } float do_erfcinv(float x) { return erfcinvf(x); } float do_h_swish(float x){ return x * fmaxf(fminf(x + 3.f, 6.f), 0.f) / 6.f; } float do_h_swish_grad(float x, float y){ return x < -3.f ? 0.f : (x > 3.f ? y : (2.f * x + 3.f) / 6.f * y); } template T do_log_sum_exp(T a, T b) { return std::log(std::exp(a) + std::exp(b)); } float do_fast_tanh(float x) { return x * (27.f + x * x) / (27.f + 9.f * x * x); } float do_fast_tanh_grad(float x, float y) { float x_pow2 = x * x; float deno = 3.f + x_pow2; return ((-48.f * x_pow2) / deno + 27.f + x_pow2) / (deno * 9.f) * y; } float do_fuse_add_h_swish(float x, float y) { float z = x + y; return z * fmaxf(fminf(z + 3.f, 6.f), 0.f) / 6.f; } template T do_shl(T, T); // undefined template T do_shr(T, T); // undefined int do_shl(int x, int y) { return x << y; } int do_shr(int x, int y) { return x >> y; } template struct MulType {}; template <> struct MulType { typedef int16_t type; }; template <> struct MulType { typedef int32_t type; }; template <> struct MulType { typedef int64_t type; }; template <> struct MulType { typedef uint16_t type; }; template T rounding_shift_right_upward(T x, int k) { T mask = (T(1) << k) - 1; T threshold = mask >> 1; return (x >> k) + ((x & mask) > threshold); } template T do_round_mulh_saturate(T a, T b) { MEGDNN_STATIC_ASSERT(std::numeric_limits::digits <= 32, "Portable RMULH is not supported for integer " "types larger than 32 bits."); MEGDNN_STATIC_ASSERT(std::numeric_limits::is_integer, "Input types should be integer for RMULH"); bool overflow = a == b && a == DTypeTrait::min(); // TODO: This really should be // rounding_shift_right_away_from_zero, but we haven't yet found a fast // way to implement it on ARM NEON. For now, we just try to align with // NEON's VQRDMULH and hope that it does not harm our NN badly. return overflow ? DTypeTrait::max() : static_cast(rounding_shift_right_upward( typename MulType::type(a) * typename MulType::type(b), std::numeric_limits::digits)); } /* ======================= basic framework ======================= */ template void gen_nozero(HostTensorND &dest) { static RNGxorshf rng{next_rand_seed()}; auto ptr = dest.template ptr(); if (DTypeTrait::category == DTypeCategory::FLOAT) { for (size_t i = 0, it = dest.shape().total_nr_elems(); i < it; ++ i) { auto v = rng() / (rng.max() + 1.0) * 3 - 1.5; bool vsign = v > 0; if (stable_sign) { vsign = i % 2; } v = std::abs(v) + 0.1; ptr[i] = vsign ? v : -v; } } else { for (size_t i = 0, it = dest.shape().total_nr_elems(); i < it; ++ i) { ctype v = rng() / (rng.max() + 1.0) * 65536 - 32767, vsat = i % 2 * 2 - 1; ptr[i] = v == 0 ? vsat : v; } } } template struct CheckerConfig { static constexpr bool enable_binary_inp_swap() { return true; } static constexpr bool allow_inp_grad(size_t idx) { MGB_MARK_USED_VAR(idx); return true; } template static InputGenerator get_inp_gen(size_t idx) { MGB_MARK_USED_VAR(idx); return NONE_INPUT_GEN; } template static void update_opt(Opt &opt) { opt.numdiff_eps = 1e-2; } template static void update_checker(Checker &checker) { MGB_MARK_USED_VAR(checker); } }; template InputGenerator get_inp_gen_f32_range(float low, float high) { mgb_assert(std::is_same::value && high - low >= 0.1); auto gen = [low, high](HostTensorND &dest) { HostTensorGenerator< dtype::Float32, RandomDistribution::UNIFORM> gen{low, high}; dest = *gen(dest.shape()); }; return gen; } #define DEF_TRAIT(_mode, _expr) \ struct _mode { \ static constexpr size_t ARITY = _CUR_ARITY; \ static constexpr Mode MODE = Mode::_mode; \ static constexpr bool ALLOW_INT = _ALLOW_INT; \ static constexpr bool ALLOW_FLOAT = _ALLOW_FLOAT; \ static constexpr bool ALLOW_BOOL = _ALLOW_BOOL; \ static constexpr const char* NAME = #_mode; \ template \ static inline ctype apply( \ std::array inp, size_t idx) { \ _EXPAND_PARAMS; \ return _expr; \ } \ }; #include "./elemwise_unary_trait_def.inl" #include "./elemwise_binary_trait_def.inl" #include "./elemwise_ternary_trait_def.inl" #undef DEF_TRAIT //! ensure nonzero value on some specific input template struct NoZeroCheckerConfig: public CheckerConfig { static constexpr bool enable_binary_inp_swap() { return false; } template static InputGenerator get_inp_gen(size_t idx) { if (idx != nozero_idx) return NONE_INPUT_GEN; return gen_nozero; } template static void update_opt(Opt &opt) { if (large_eps) opt.numdiff_eps_single_inp[nozero_idx] = 0.05; } }; struct NoGradCheckerConfig: public CheckerConfig { static constexpr bool allow_inp_grad(size_t) { return false; } }; /* ======================= unary config ======================= */ template<> struct CheckerConfig: public NoZeroCheckerConfig<0> {}; template<> struct CheckerConfig: public NoZeroCheckerConfig<0> {}; template<> struct CheckerConfig: public NoGradCheckerConfig {}; template<> struct CheckerConfig: public NoGradCheckerConfig {}; template<> struct CheckerConfig: public NoGradCheckerConfig {}; template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(0.1, 4); } template static void update_opt(Opt &opt) { opt.numdiff_eps = 1e-2; opt.numdiff_max_err = 0.1; } }; template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(-0.2, 0.2); } }; template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(-0.95, 0.95); } template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-3; opt.numdiff_max_err = 4e-3; } }; template<> struct CheckerConfig: public CheckerConfig {}; template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(-5, 5); } template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template<> struct CheckerConfig: public CheckerConfig { template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template<> struct CheckerConfig: public CheckerConfig { template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template<> struct CheckerConfig: public NoGradCheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(-1, 1); } template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template<> struct CheckerConfig: public CheckerConfig { template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template<> struct CheckerConfig: public NoGradCheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(0, 2); } template static void update_opt(Opt &opt) { opt.numdiff_eps = 2e-2; } }; template <> struct CheckerConfig : public CheckerConfig {}; template <> struct CheckerConfig : public NoGradCheckerConfig {}; /* ======================= binary config ======================= */ template struct BinaryInputMinGap: public CheckerConfig { template static void do_update_checker(Checker &checker) { auto icoord = [](const typename Checker::NumInpArray &inp) { static const ctype GAP{for_mod ? 0.01f : 0.1f}; if (DTypeTrait::category != DTypeCategory::FLOAT) return; auto p0 = inp[0]->template ptr(), p1 = inp[1]->template ptr(); for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++ i) { if (for_mod) { auto p1v = std::abs(p1[i]), mod = std::fmod(p0[i], p1v); mod += mod < 0 ? p1v : 0; if (mod < GAP || mod > p1v - GAP) { mgb_assert(p1v > GAP * 4); ctype m0, m1; do { p0[i] += GAP; m0 = std::fmod(p0[i] - GAP, p1[i]); m1 = std::fmod(p0[i] + GAP, p1[i]); } while (std::abs(m1 - m0) > GAP * 2 + 1e-3); } } else { if (std::abs(p0[i] - p1[i]) < GAP) { p1[i] += p0[i] < p1[i] ? GAP : -GAP; } } } }; checker.set_input_coordinator(icoord); } template static void update_checker(Checker &checker) { using ctype = typename Checker::ctype; if (std::is_integral::value) return; if (std::is_same::value) return do_update_checker(checker); if (std::is_same::value) return do_update_checker(checker); mgb_assert(0); } }; struct BinaryEQInput: public CheckerConfig { static constexpr bool allow_inp_grad(size_t idx) { return idx >= 2; } template static void update_checker(Checker &checker) { using ctype = typename Checker::ctype; auto icoord = [](const typename Checker::NumInpArray &inp) { if (DTypeTrait::category != DTypeCategory::FLOAT) return; auto p0 = inp[0]->template ptr(), p1 = inp[1]->template ptr(); RNGxorshf rng{next_rand_seed()}; for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++ i) { p0[i] = rng() % 3 == 0 ? p1[i] : p0[i]; } }; checker.set_input_coordinator(icoord); } }; struct BinaryPlaneNoPiInput : public CheckerConfig { template static void update_checker(Checker& checker) { using ctype = typename Checker::ctype; auto icoord = [](const typename Checker::NumInpArray& inp) { if (DTypeTrait::category != DTypeCategory::FLOAT) return; auto p0 = inp[0]->template ptr(), p1 = inp[1]->template ptr(); RNGxorshf rng{next_rand_seed()}; auto maxv = rng.max() + 1.0; for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++i) { //! To be numerical stable, r cannot be too small auto r = rng() / maxv * 2 + 0.5; //! radious //! Avoid pi value due to periodicity //! Numerical diff will be wrong there //! Range [-pi+eps, pi-eps] auto t = rng() / maxv * 3.1 * 2 - 3.1; //! angle //! First input is y in space p0[i] = r * std::sin(t); //! Second input is x in space p1[i] = r * std::cos(t); } }; checker.set_input_coordinator(icoord); } static constexpr bool enable_binary_inp_swap() { return false; } }; template <> struct CheckerConfig : public BinaryPlaneNoPiInput { template static void update_opt(Opt& opt) { opt.numdiff_eps = 1e-3; opt.numdiff_max_err = 0.02; } }; template<> struct CheckerConfig: public NoZeroCheckerConfig<0> {}; template<> struct CheckerConfig: public NoZeroCheckerConfig<1, false> { static constexpr bool allow_inp_grad(size_t) { return false; } }; template<> struct CheckerConfig: public NoZeroCheckerConfig<1, false> { template static void update_opt(Opt &opt) { opt.numdiff_eps = 1e-2; opt.numdiff_max_err = 0.1; } }; template<> struct CheckerConfig: public BinaryEQInput {}; template<> struct CheckerConfig: public NoGradCheckerConfig {}; template<> struct CheckerConfig: public NoGradCheckerConfig {}; template <> struct CheckerConfig : public CheckerConfig {}; template<> struct CheckerConfig: public NoZeroCheckerConfig<0> { }; template<> struct CheckerConfig: public CheckerConfig { static constexpr bool enable_binary_inp_swap() { return false; } template static void update_opt(Opt &opt) { opt.numdiff_eps = 1e-2; opt.numdiff_max_err = 0.06; } template static InputGenerator get_inp_gen(size_t idx) { auto func = [](HostTensorND &dest) { dest = *HostTensorGenerator::dtype >{}(dest.shape()); auto ptr = dest.ptr(); for (size_t i = 0, t = dest.shape().total_nr_elems(); i < t; ++ i) { ptr[i] = std::abs(ptr[i]) + 0.1; } }; if (idx == 0) return func; return NONE_INPUT_GEN; } }; template<> struct CheckerConfig: public BinaryInputMinGap {}; template<> struct CheckerConfig: public BinaryInputMinGap {}; template<> struct CheckerConfig: public NoZeroCheckerConfig<1, false>, public BinaryInputMinGap { using NoZeroCheckerConfig<1, false>::get_inp_gen; using NoZeroCheckerConfig<1, false>::enable_binary_inp_swap; using BinaryInputMinGap::update_checker; template static void update_opt(Opt &opt) { opt.numdiff_eps = 0.003; } static constexpr bool allow_inp_grad(size_t idx) { return idx == 0; } }; template<> struct CheckerConfig: public CheckerConfig { static constexpr bool enable_binary_inp_swap() { return false; } static constexpr bool allow_inp_grad(size_t idx) { return false; } template static InputGenerator get_inp_gen(size_t); }; template<> struct CheckerConfig: public CheckerConfig {}; template<> InputGenerator CheckerConfig::get_inp_gen(size_t idx) { if (!idx) return NONE_INPUT_GEN; auto gen = [](HostTensorND &dest) { HostTensorGenerator gen{0, 32}; dest = *gen(dest.shape()); }; return gen; } template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return gen_nozero; } }; template<> struct CheckerConfig: public CheckerConfig { template static InputGenerator get_inp_gen(size_t) { return get_inp_gen_f32_range(0.1, 5); } }; template<> struct CheckerConfig: public CheckerConfig { static constexpr bool allow_inp_grad(size_t idx) { MGB_MARK_USED_VAR(idx); return false; } }; /* ======================= ternary config ======================= */ template<> struct CheckerConfig: public BinaryInputMinGap {}; /* ======================= test runner ======================= */ namespace detail { template struct enable_for_dtype_impl; template struct enable_for_dtype_impl { static constexpr bool value = Trait::ALLOW_FLOAT; }; template<> struct enable_for_dtype_impl { static constexpr bool value = false; }; template struct enable_for_dtype_impl { static constexpr bool value = Trait::ALLOW_INT; }; template<> struct enable_for_dtype_impl { static constexpr bool value = false; }; template struct enable_for_dtype_impl { static constexpr bool value = Trait::ALLOW_BOOL; }; template<> struct enable_for_dtype_impl { static constexpr bool value = false; }; } //! whether to enable test for specific dtype and Trait template constexpr bool enable_for_dtype = detail::enable_for_dtype_impl::value; template> struct TestRunner; template struct TestRunner { static void run(); }; template struct TestRunner { static void run() { } }; template struct TestRunner { static void run() { } }; template class TestOprBasicArithUnaryElemwise: public ::testing::Test { }; template class TestOprBasicArithBinaryElemwise: public ::testing::Test { }; template class TestOprBasicArithTernaryElemwise: public ::testing::Test { }; typedef ::testing::Types< #define DEF_TRAIT(_mode, _expr) _mode, #include "./elemwise_unary_trait_def.inl" #undef DEF_TRAIT void // extra void to consume last comma > UnaryTraitTypes; TYPED_TEST_CASE(TestOprBasicArithUnaryElemwise, UnaryTraitTypes); typedef ::testing::Types< #define DEF_TRAIT(_mode, _expr) _mode, #include "./elemwise_binary_trait_def.inl" #undef DEF_TRAIT void // extra void to consume last comma > BinaryTraitTypes; TYPED_TEST_CASE(TestOprBasicArithBinaryElemwise, BinaryTraitTypes); typedef ::testing::Types< #define DEF_TRAIT(_mode, _expr) _mode, #include "./elemwise_ternary_trait_def.inl" #undef DEF_TRAIT void // extra void to consume last comma > TernaryTraitTypes; TYPED_TEST_CASE(TestOprBasicArithTernaryElemwise, TernaryTraitTypes); } // anonymous namespace template void TestRunner::run() { { Mode mode = Trait::MODE; // copy to temporary var to avoid undefined reference when linking tested_mode.insert(mode); } using ctype = typename DTypeTrait::ctype; HostTensorGenerator<> gen; using Config = CheckerConfig; static constexpr bool TEST_REV_INP = Trait::ARITY == 2 && Config::allow_inp_grad(0) == Config::allow_inp_grad(1) && Config::enable_binary_inp_swap(); using Checker = AutoOprChecker; auto make_graph = [&](const typename Checker::SymInpArray &inputs) { typename Checker::SymOutArray out; SymbolVarArray vinp(inputs.begin(), inputs.end()); out[0] = opr::Elemwise::make(vinp, Trait::MODE); if (TEST_REV_INP) { std::swap(vinp[0], vinp[1]); out[1] = opr::Elemwise::make(vinp, Trait::MODE); } return out; }; auto fwd = [&](typename Checker::NumOutArray &dest, typename Checker::NumInpArray inp) { dest[0].resize(inp[0]->shape()); if (TEST_REV_INP) dest[1].resize(inp[0]->shape()); std::array iptr; for (size_t i = 0; i < Trait::ARITY; ++ i) iptr[i] = inp[i]->template ptr(); size_t sz = dest[0].shape().total_nr_elems(); ctype* optr = dest[0].template ptr(); for (size_t i = 0; i < sz; ++ i) optr[i] = Trait::apply(iptr, i); if (TEST_REV_INP) { std::swap(iptr[0], iptr[1]); ctype* optr = dest[1].template ptr(); for (size_t i = 0; i < sz; ++ i) optr[i] = Trait::apply(iptr, i); } }; Checker checker{make_graph, fwd}; checker.set_extra_err_msg(ssprintf("mode=%s", Trait::NAME)); for (size_t i = 0; i < Trait::ARITY; ++ i) { auto func = Config::template get_inp_gen(i); if (func.valid()) checker.set_input_generator(i, func.val()); checker.set_input_allow_grad(i, Config::allow_inp_grad(i)); } TensorShape shapes[] = {{1}, {23, 3}, {666}}; typename Checker::RunOptions opt; Config::update_opt(opt); Config::update_checker(checker); for (auto &&ishp: shapes) { typename Checker::ShapeInpArray inp; std::fill(inp.begin(), inp.end(), ishp); checker.run(inp, opt); } } TYPED_TEST(TestOprBasicArithUnaryElemwise, Int32) { TestRunner::run(); } TYPED_TEST(TestOprBasicArithBinaryElemwise, Int32) { TestRunner::run(); } TYPED_TEST(TestOprBasicArithTernaryElemwise, Int32) { TestRunner::run(); } TYPED_TEST(TestOprBasicArithUnaryElemwise, Float32) { set_rand_seed(19931102); TestRunner::run(); } TYPED_TEST(TestOprBasicArithBinaryElemwise, Float32) { set_rand_seed(19931150); TestRunner::run(); } TYPED_TEST(TestOprBasicArithTernaryElemwise, Float32) { set_rand_seed(19931102); TestRunner::run(); } TEST(TestOprBasicArithElemwise, CheckAllModeTested) { size_t nr_member = opr::Elemwise::Param::MODE_NR_MEMBER; ASSERT_EQ(nr_member, tested_mode.size() + 4); // Not using TestRunner: NOT, AND, OR, XOR } #define TEST_OPR_BASIC_ARITH_UNARY_BOOL(_mode, _op) \ TEST(TestOprBasicArithElemwise, _mode) { \ HostTensorGenerator gen; \ auto host_x = gen({2, 1}); \ auto ptr = host_x->ptr(); \ for (size_t i = 0; i < 2; ++i) { \ ptr[i] = (i & 1); \ } \ auto graph = ComputingGraph::make(); \ using Mode = opr::Elemwise::Mode; \ auto x = opr::Host2DeviceCopy::make(*graph, host_x), \ y = opr::Elemwise::make({x}, Mode::_mode); \ HostTensorND host_y; \ auto func = graph->compile({make_callback_copy(y, host_y)}); \ func->execute(); \ ASSERT_EQ(TensorShape({2, 1}), host_y.shape()); \ auto ptry = host_y.ptr(); \ for (int i = 0;i < 2;i ++) { \ ASSERT_EQ(_op ptr[i], ptry[i]); \ } \ } \ TEST_OPR_BASIC_ARITH_UNARY_BOOL(NOT, !) #define TEST_OPR_BASIC_ARITH_BINARY_BOOL(_mode, _op) \ TEST(TestOprBasicArithElemwise, _mode) { \ HostTensorGenerator gen; \ auto host_x1 = gen({2, 2}), host_x2 = gen({2, 2}); \ auto ptr1 = host_x1->ptr(), ptr2 = host_x2->ptr(); \ for (size_t i = 0; i < 4; ++i) { \ ptr1[i] = (i < 2); \ ptr2[i] = (i & 1); \ } \ auto graph = ComputingGraph::make(); \ using Mode = opr::Elemwise::Mode; \ auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1), \ x2 = opr::Host2DeviceCopy::make(*graph, host_x2), \ y = opr::Elemwise::make({x1, x2}, Mode::_mode); \ HostTensorND host_y; \ auto func = graph->compile({make_callback_copy(y, host_y)}); \ func->execute(); \ ASSERT_EQ(TensorShape({2, 2}), host_y.shape()); \ auto ptry = host_y.ptr(); \ for (int i = 0;i < 4;i ++) { \ ASSERT_EQ(ptr1[i] _op ptr2[i], ptry[i]); \ } \ } \ TEST_OPR_BASIC_ARITH_BINARY_BOOL(AND, &&) TEST_OPR_BASIC_ARITH_BINARY_BOOL(OR, ||) TEST_OPR_BASIC_ARITH_BINARY_BOOL(XOR, ^) TEST_OPR_BASIC_ARITH_BINARY_BOOL(LT, <) TEST_OPR_BASIC_ARITH_BINARY_BOOL(LEQ, <=) TEST_OPR_BASIC_ARITH_BINARY_BOOL(EQ, ==) TEST(TestOprBasicArithElemwise, FuseMulAdd3Shapes) { using Checker = AutoOprChecker<3, 1>; opr::Elemwise *opr; auto make_graph = [&](const typename Checker::SymInpArray &i) -> Checker::SymOutArray { i[0].node()->owner_graph()->options().graph_opt_level = 0; auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD3); opr = &ret.node()->owner_opr()->cast_final_safe(); return {ret}; }; auto fwd = [&](typename Checker::NumOutArray &dest, typename Checker::NumInpArray inp) { auto graph = ComputingGraph::make(); graph->options().graph_opt_level = false; auto i = [&](size_t idx) { return opr::Host2DeviceCopy::make(*graph, inp[idx]); }; auto ans = i(0) * i(1) + i(2); graph->compile({make_callback_copy(ans, dest[0])})->execute(); }; Checker checker{make_graph, fwd}; checker. run({TensorShape{1, 2}, {2, 1}, {1, 2}}). run({TensorShape{1, 2}, {2, 1}, {1}}); ASSERT_FALSE(opr->fuse_badlayout_warn_printed()); checker.run({TensorShape{1, 1, 4}, {1, 3, 1}, {2, 1, 1}}); ASSERT_TRUE(opr->fuse_badlayout_warn_printed()); } TEST(TestOprBasicArithElemwise, FuseMulAdd4Shapes) { using Checker = AutoOprChecker<4, 1>; opr::Elemwise *opr; auto make_graph = [&](const typename Checker::SymInpArray &i) -> Checker::SymOutArray { i[0].node()->owner_graph()->options().graph_opt_level = 0; auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD4); opr = &ret.node()->owner_opr()->cast_final_safe(); return {ret}; }; auto fwd = [&](typename Checker::NumOutArray &dest, typename Checker::NumInpArray inp) { auto graph = ComputingGraph::make(); graph->options().graph_opt_level = false; auto i = [&](size_t idx) { return opr::Host2DeviceCopy::make(*graph, inp[idx]); }; auto ans = i(0) * i(1) + i(2) * i(3); graph->compile({make_callback_copy(ans, dest[0])})->execute(); }; Checker checker{make_graph, fwd}; checker. run({TensorShape{1, 2}, {2, 1}, {1, 2}, {2, 1}}). run({TensorShape{1, 2, 1, 2, 1, 2}, {2, 1, 2, 1, 2, 1}, {2, 1, 2, 1, 2, 1}, {1, 2, 1, 2, 1, 2}}); ASSERT_FALSE(opr->fuse_badlayout_warn_printed()); checker.run({TensorShape{1, 2}, {2, 1}, {2, 2}, {2, 2}}); ASSERT_TRUE(opr->fuse_badlayout_warn_printed()); } TEST(TestOprBasicArithElemwise, WritableFwdForSameStorage) { HostTensorGenerator<> gen; auto run = [&](int idx_val, bool should_overwrite) { auto host_x = gen({100}); auto make_y = [&](ComputingGraph &graph) { using S = opr::Subtensor; auto x = opr::Host2DeviceCopy::make_no_fwd(graph, host_x), idx = x.make_scalar(idx_val), sub0 = S::make(x, {S::AxisIndexer::make_interval(0, None, idx, None)}), sub1 = S::make(x, {S::AxisIndexer::make_interval(0, -idx, None, None)}), y = sub0 + sub1; auto chk_overwrite = [sub0, sub1, y]() { auto py = y.node()->prev_dev_ptr(); return sub0.node()->prev_dev_ptr() == py || sub1.node()->prev_dev_ptr() == py; }; return std::make_pair(y, chk_overwrite); }; auto g0 = ComputingGraph::make(), g1 = ComputingGraph::make(); g1->options().seq_opt.enable_mem_plan_opt = false; auto y0 = make_y(*g0), y1 = make_y(*g1); HostTensorND host_y0, host_y1; auto f0 = g0->compile({make_callback_copy(y0.first, host_y0)}), f1 = g1->compile({make_callback_copy(y1.first, host_y1)}); f0->execute(); f1->execute(); ASSERT_EQ(host_y1.shape(), TensorShape{static_cast(idx_val)}); MGB_ASSERT_TENSOR_EQ(host_y1, host_y0); ASSERT_EQ(should_overwrite, y0.second()); ASSERT_FALSE(y1.second()); }; run(10, true); run(90, false); } TEST(TestOprBasicArithElemwise, NonContigInput) { HostTensorGenerator<> gen; auto graph = ComputingGraph::make(); constexpr size_t SIZE = 100; auto host_x = gen({SIZE}); using S = opr::Subtensor; auto x = opr::Host2DeviceCopy::make(*graph, host_x), xsub = S::make(x, {S::AxisIndexer::make_interval(0, None, None, x.make_scalar(2))}), y = xsub + x.make_scalar(1.f); HostTensorND host_y; auto func = graph->compile({make_callback_copy(y, host_y)}); func->execute(); ASSERT_FALSE(xsub.node()->dev_tensor().layout().is_contiguous()); ASSERT_EQ(SIZE / 2, host_y.layout().total_nr_elems()); auto px = host_x->ptr(), py = host_y.ptr(); for (size_t i = 0; i < SIZE / 2; ++ i) { MGB_ASSERT_FLOAT_EQ(px[i * 2] + 1, py[i]); } } TEST(TestOprBasicArithElemwise, CommutableDedup) { auto cn = CompNode::load("xpux"); auto graph = ComputingGraph::make(); auto host_x = std::make_shared(cn, TensorShape{100}), host_y = std::make_shared(cn, TensorShape{100}); auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Host2DeviceCopy::make(*graph, host_y); auto mk = [](Mode mode, SymbolVar x, SymbolVar y) { return opr::Elemwise::make({x, y}, mode); }; #define CHK(_a, _b) ASSERT_EQ((_a).node(), (_b).node()) CHK(x + y, y + x); CHK(x * y, y * x); CHK(mk(Mode::EQ, x, y), mk(Mode::EQ, y, x)); CHK(mk(Mode::MIN, x, y), mk(Mode::MIN, y, x)); CHK(mk(Mode::MAX, x, y), mk(Mode::MAX, y, x)); CHK(mk(Mode::LOG_SUM_EXP, x, y), mk(Mode::LOG_SUM_EXP, y, x)); CHK(x < y, y > x); #undef CHK ASSERT_NE((x - y).node(), (y - x).node()); } TEST(TestLayoutUtil, CollectiveCollapse) { using namespace opr; auto shp2layout = [](const TensorShapeArray& tshps) { TensorLayoutArray tlayouts(tshps.size()); for (size_t i = 0; i < tshps.size(); i++) { tlayouts[i] = TensorLayout(tshps[i], dtype::Float32()); } return tlayouts; }; auto check = [](const TensorLayoutArray& res, const TensorLayoutArray& std) { for (size_t i = 0; i < res.size(); i++) { ASSERT_EQ(std[i], res[i]); } }; TensorShapeArray tshps1 = {{3, 3}, {3, 3}, {3, 3}}; auto cc_res1 = Elemwise::collective_collapse(shp2layout(tshps1)); TensorShapeArray std_res1 = {{9}, {9}, {9}}; check(cc_res1, shp2layout(std_res1)); TensorShapeArray tshps2 = {{3, 3, 3}, {1, 3, 3}}; auto cc_res2 = Elemwise::collective_collapse(shp2layout(tshps2)); TensorShapeArray std_res2 {{3, 9}, {1, 9}}; check(cc_res2, shp2layout(std_res2)); TensorShapeArray tshp3 = {{3, 3, 3}, {3, 3, 1}}; auto cc_res3 = Elemwise::collective_collapse(shp2layout(tshp3)); TensorShapeArray std_res3 {{9, 3}, {9, 1}}; check(cc_res3, shp2layout(std_res3)); TensorShapeArray tshp4 = {{3, 3, 3, 3}, {1, 3, 3, 1}}; auto cc_res4 = Elemwise::collective_collapse(shp2layout(tshp4)); TensorShapeArray std_res4 {{3, 9, 3}, {1, 9, 1}}; check(cc_res4, shp2layout(std_res4)); TensorLayoutArray inp5 = { TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32()), TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32()) }; auto cc_res5 = Elemwise::collective_collapse(inp5); auto std_res5 = inp5; check(cc_res5, std_res5); } TEST(TestOprBasicArithElemwise, EmptyInputOutputUnary) { HostTensorGenerator<> gen; auto graph = ComputingGraph::make(); auto host_x = gen({3, 0, 1, 3}); auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Elemwise::make( {x}, opr::Elemwise::Param(opr::Elemwise::Param::Mode::RELU)); HostTensorND host_y; auto func = graph->compile({make_callback_copy(y, host_y)}); ASSERT_NO_THROW(func->execute().wait()); ASSERT_TRUE(host_y.empty()); ASSERT_TRUE(host_y.shape().is_empty()); MGB_ASSERT_SHAPE_EQ(host_y.shape(), TensorShape({3, 0, 1, 3})); } TEST(TestOprBasicArithElemwise, EmptyInputOutputBinary) { HostTensorGenerator<> gen; auto graph = ComputingGraph::make(); auto host_x = gen({0, 8, 1, 7}), host_y = gen({0, 8, 1, 7}); auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = opr::Host2DeviceCopy::make(*graph, host_y), z = x + y; HostTensorND host_z; auto func = graph->compile({make_callback_copy(z, host_z)}); // Invalid broadcast host_y->resize({0, 9, 1, 7}); ASSERT_ANY_THROW(func->execute().wait()); // Broadcast to 0 host_y->resize({1, 8, 0, 7}); ASSERT_NO_THROW(func->execute().wait()); ASSERT_TRUE(host_z.empty()); ASSERT_TRUE(host_z.shape().is_empty()); MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 0, 7})); // Broadcast to 0 (2) host_y->resize({2, 8, 1, 7}); ASSERT_NO_THROW(func->execute().wait()); ASSERT_TRUE(host_z.empty()); ASSERT_TRUE(host_z.shape().is_empty()); MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7})); // Scalar broadcast z = x + x.make_scalar(1.f); func = graph->compile({make_callback_copy(z, host_z)}); ASSERT_NO_THROW(func->execute().wait()); ASSERT_TRUE(host_z.empty()); ASSERT_TRUE(host_z.shape().is_empty()); MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7})); } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}