/** * \file dnn/test/common/opr_proxy.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "test/common/deduce_layout_proxy.h" #include "test/common/exec_proxy.h" #include "test/common/inspect_type.h" #include "test/common/opr_trait.h" #include "test/common/timer.h" #include "test/common/workspace_wrapper.h" #include #include namespace megdnn { namespace test { template ::arity, bool has_workspace = OprTrait::has_workspace, bool can_deduce_layout = OprTrait::can_deduce_layout> struct OprProxyDefaultImpl : public DeduceLayoutProxy, public ExecProxy {}; template struct OprProxy : public OprProxyDefaultImpl {}; template struct OprWeightPreprocessProxy : public OprProxyDefaultImpl {}; template struct OprProxyVectorToSingle {}; template <> struct OprProxy { static void deduce_layout(ElemwiseForward* opr, TensorLayoutArray& layouts) { megdnn_assert(layouts.size() >= 2); auto inp = layouts; inp.pop_back(); opr->deduce_layout(inp, layouts.back()); } static void exec(ElemwiseForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() >= 2); auto inp = tensors; inp.pop_back(); opr->exec(inp, tensors.back()); } }; template <> struct OprProxy { static void deduce_layout(ElemwiseMultiType* opr, TensorLayoutArray& layouts) { megdnn_assert(layouts.size() >= 2); auto inp = layouts; inp.pop_back(); opr->deduce_layout(inp, layouts.back()); } static void exec(ElemwiseMultiType* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() >= 2); auto inp = tensors; inp.pop_back(); opr->exec(inp, tensors.back()); } }; template <> struct OprProxy { static void deduce_layout(ConcatForward* opr, TensorLayoutArray& layouts) { megdnn_assert(layouts.size() >= 2); auto inp = layouts; inp.pop_back(); opr->deduce_layout(inp, layouts.back()); } static void exec(ConcatForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() >= 2); auto inp = tensors; inp.pop_back(); TensorLayoutArray layouts(tensors.size()); std::transform(tensors.begin(), tensors.end(), layouts.begin(), [](const TensorND& tensor) { return tensor.layout; }); auto inp_layouts = layouts; inp_layouts.pop_back(); WorkspaceWrapper W(opr->handle(), opr->get_workspace_in_bytes( inp_layouts, layouts.back())); auto inp_tensors = tensors; inp_tensors.pop_back(); opr->exec(inp_tensors, tensors.back(), W.workspace()); } }; template <> struct OprProxy : DeduceLayoutProxy { static void exec(SplitForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() >= 2); auto out = tensors; out.erase(out.begin()); TensorLayoutArray layouts(tensors.size()); std::transform(tensors.begin(), tensors.end(), layouts.begin(), [](const TensorND& tensor) { return tensor.layout; }); auto out_layouts = layouts; out_layouts.erase(out_layouts.begin()); WorkspaceWrapper W( opr->handle(), opr->get_workspace_in_bytes(layouts.front(), out_layouts)); auto out_tensors = tensors; out_tensors.erase(out_tensors.begin()); opr->exec(tensors.front(), out_tensors, W.workspace()); } }; //! OprProxy impl for tenary oprs with profiling support template struct OprProxyProfilingBase : public DeduceLayoutProxy::can_deduce_layout> { size_t warmup_times = 10, exec_times = 100; //! whether to enable profiling bool m_profiling; WorkspaceWrapper W; //! target algo setup by profiler; it can also be directly specified by the //! caller typename Opr::AlgorithmInfo target_algo_info; OprProxyProfilingBase(bool profile = false) { m_profiling = profile; } //! used for alloc tensor for weight preprocess static std::shared_ptr alloc_tensors( Handle* handle, const TensorLayoutArray& layouts) { auto deleter = [handle](TensorNDArray* ptr) { for (auto&& i : *ptr) { auto pdata = static_cast(i.raw_ptr) + i.layout.span().low_byte; megdnn_free(handle, pdata); } delete ptr; }; std::shared_ptr ret{new TensorNDArray, deleter}; for (size_t i = 0; i < layouts.size(); ++i) { auto span = layouts[i].span(); ret->emplace_back(static_cast( megdnn_malloc(handle, span.dist_byte())) - span.low_byte, layouts[i]); } return ret; } }; template struct OprProxyProfilingTernary : public OprProxyProfilingBase { using Base = OprProxyProfilingBase; using OprProxyProfilingBase::OprProxyProfilingBase; void exec(Opr* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 3); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info(tensors[0].layout, tensors[1].layout, tensors[2].layout)) { opr->execution_policy().algo = algo; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout); Base::W.update(workspace_size); } if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], Base::W.workspace()); } }; #define DEF_PROF3(c) \ template <> \ struct OprProxy : public OprProxyProfilingTernary { \ using OprProxyProfilingTernary::OprProxyProfilingTernary; \ } DEF_PROF3(ConvolutionBackwardData); DEF_PROF3(ConvolutionBackwardFilter); DEF_PROF3(LocalShareForward); DEF_PROF3(LocalShareBackwardData); DEF_PROF3(LocalShareBackwardFilter); #undef DEF_PROF3 template <> struct OprProxy : public OprProxyProfilingTernary { using OprProxyProfilingTernary< ConvolutionForward>::OprProxyProfilingTernary; void exec(ConvolutionForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 3); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.desc.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info(tensors[0].layout, tensors[1].layout, tensors[2].layout)) { opr->execution_policy().algo = algo; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, nullptr); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], nullptr, Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], nullptr, Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, nullptr); Base::W.update(workspace_size); } if (!Base::target_algo_info.desc.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, nullptr); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], nullptr, Base::W.workspace()); } }; template <> struct OprWeightPreprocessProxy : public OprProxyProfilingTernary { using OprProxyProfilingTernary< ConvolutionForward>::OprProxyProfilingTernary; void exec(ConvolutionForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 3); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.desc.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info(tensors[0].layout, tensors[1].layout, tensors[2].layout)) { opr->execution_policy().algo = algo; auto preprocess_tensors = weight_prerocess(opr, tensors, algo.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvolutionForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, &preprocessed_filter); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], &preprocessed_filter, Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], &preprocessed_filter, Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto preprocess_tensors = weight_prerocess(opr, tensors, Base::target_algo_info.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvolutionForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, &preprocessed_filter); Base::W.update(workspace_size); } auto preprocess_tensors = weight_prerocess(opr, tensors, Base::target_algo_info.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvolutionForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, &preprocessed_filter); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], &preprocessed_filter, Base::W.workspace()); } //! handle weight preprocess std::shared_ptr weight_prerocess( ConvolutionForward* opr, const TensorNDArray& tensors, const ConvolutionForward::AlgorithmDesc&) { auto weight_perprocess_layouts = opr->deduce_preprocessed_filter_layout( tensors[0].layout, tensors[1].layout, tensors[2].layout); auto preprocessed_filter_tensors_ptr = alloc_tensors(opr->handle(), weight_perprocess_layouts); ConvolutionForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocessed_filter_tensors_ptr}; size_t preprocess_workspace_size = opr->get_preprocess_workspace_in_bytes(tensors[0].layout, tensors[1].layout, tensors[2].layout); WorkspaceWrapper preprocess_workspace(opr->handle(), preprocess_workspace_size); opr->exec_preprocess(tensors[0].layout, tensors[1], tensors[2].layout, &preprocessed_filter, preprocess_workspace.workspace()); return preprocessed_filter_tensors_ptr; } }; template struct OprProxyProfiling5 : public OprProxyProfilingBase { using Base = OprProxyProfilingBase; using OprProxyProfilingBase::OprProxyProfilingBase; void exec(Opr* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 5); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout)) { opr->execution_policy().algo = algo; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); Base::W.update(workspace_size); } if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], Base::W.workspace()); } }; #define DEF_PROF5(c) \ template <> \ struct OprProxy : public OprProxyProfiling5 { \ using OprProxyProfiling5::OprProxyProfiling5; \ } DEF_PROF5(DeformableConvForward); DEF_PROF5(DeformableConvBackwardFilter); DEF_PROF5(BatchConvBiasForward); #undef DEF_PROF5 template <> struct OprProxy : public OprProxyProfiling5 { using OprProxyProfiling5::OprProxyProfiling5; void exec(ConvBiasForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 5); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.desc.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout)) { opr->execution_policy().algo = algo; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, nullptr); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], nullptr, Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], nullptr, Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, nullptr); Base::W.update(workspace_size); } if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, nullptr); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], nullptr, Base::W.workspace()); } }; template <> struct OprWeightPreprocessProxy : public OprProxyProfiling5 { using OprProxyProfiling5::OprProxyProfiling5; void exec(ConvBiasForward* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 5); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout)) { opr->execution_policy().algo = algo; auto preprocess_tensors = weight_prerocess(opr, tensors, algo.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvBiasForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, &preprocessed_filter); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], &preprocessed_filter, Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], &preprocessed_filter, Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto preprocess_tensors = weight_prerocess(opr, tensors, Base::target_algo_info.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvBiasForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, &preprocessed_filter); Base::W.update(workspace_size); } auto preprocess_tensors = weight_prerocess(opr, tensors, Base::target_algo_info.desc); megcoreSynchronize(opr->handle()->megcore_computing_handle()); ConvBiasForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocess_tensors}; if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, &preprocessed_filter); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], &preprocessed_filter, Base::W.workspace()); } //! handle weight preprocess std::shared_ptr weight_prerocess( ConvBiasForward* opr, const TensorNDArray& tensors, const ConvBiasForward::AlgorithmDesc&) { auto weight_perprocess_layouts = opr->deduce_preprocessed_filter_layout( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); auto preprocessed_filter_tensors_ptr = alloc_tensors(opr->handle(), weight_perprocess_layouts); ConvBiasForward::PreprocessedFilter preprocessed_filter{ nullptr, *preprocessed_filter_tensors_ptr}; size_t preprocess_workspace_size = opr->get_preprocess_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout); WorkspaceWrapper preprocess_workspace(opr->handle(), preprocess_workspace_size); opr->exec_preprocess(tensors[0].layout, tensors[1], tensors[2], tensors[3].layout, tensors[4].layout, &preprocessed_filter, preprocess_workspace.workspace()); return preprocessed_filter_tensors_ptr; } }; template struct OprProxyProfiling8 : public OprProxyProfilingBase { using Base = OprProxyProfilingBase; using OprProxyProfilingBase::OprProxyProfilingBase; void exec(Opr* opr, const TensorNDArray& tensors) { megdnn_assert(tensors.size() == 8); if (!Base::W.valid()) { Base::W = WorkspaceWrapper(opr->handle(), 0); } if (Base::m_profiling && !Base::target_algo_info.valid()) { size_t min_time = std::numeric_limits::max(); for (auto algo : opr->get_all_algorithms_info( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, tensors[5].layout, tensors[6].layout, tensors[7].layout)) { opr->execution_policy().algo = algo; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, tensors[5].layout, tensors[6].layout, tensors[7].layout); Base::W.update(workspace_size); for (size_t times = 0; times < Base::warmup_times; ++times) opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], tensors[5], tensors[6], tensors[7], Base::W.workspace()); megcoreSynchronize(opr->handle()->megcore_computing_handle()); Timer timer; timer.start(); for (size_t times = 0; times < Base::exec_times; ++times) { opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], tensors[5], tensors[6], tensors[7], Base::W.workspace()); } megcoreSynchronize(opr->handle()->megcore_computing_handle()); timer.stop(); printf("%.3fms %s\n", timer.get_time_in_us() / 1e3, algo.name.c_str()); if (min_time > timer.get_time_in_us()) { min_time = timer.get_time_in_us(); Base::target_algo_info = algo; } } opr->execution_policy().algo = Base::target_algo_info; auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, tensors[5].layout, tensors[6].layout, tensors[7].layout); Base::W.update(workspace_size); } if (!Base::target_algo_info.valid()) { auto workspace_size = opr->get_workspace_in_bytes( tensors[0].layout, tensors[1].layout, tensors[2].layout, tensors[3].layout, tensors[4].layout, tensors[5].layout, tensors[6].layout, tensors[7].layout); Base::W.update(workspace_size); } opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4], tensors[5], tensors[6], tensors[7], Base::W.workspace()); } }; #define DEF_PROF8(c) \ template <> \ struct OprProxy : public OprProxyProfiling8 { \ using OprProxyProfiling8::OprProxyProfiling8; \ } DEF_PROF8(DeformableConvBackwardData); #undef DEF_PROF8 } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen