/** * \file dnn/src/cuda/convolution/backward_data/algo.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #pragma once #include #include "src/common/algo_base.h" #include "src/common/metahelper.h" #include "src/cuda/convolution/helper.h" #include "src/cuda/cudnn_wrapper.h" namespace megdnn { namespace cuda { /*! * \brief base class for convolution algos * * All the algo impls should try to support non-contiguous batch dim, for group * conv execution. */ class ConvolutionBackwardDataImpl::AlgoBase : public Algorithm { protected: ~AlgoBase() = default; public: enum class AlgoType : uint32_t { CUDA_CUDNN, CUDA_MATMUL, CUDA_CHANWISE, CUDA_CHANWISE_SMALL, CUDA_BFLOAT16, CUDA_GROUP_CONV_GENERAL, }; using Mapper = std::unordered_map; AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } struct SizeArgs { HandleImpl* handle; CanonizedFilterMeta filter_meta; const TensorLayout *diff_layout, *grad_layout, *filter_layout; ConvolutionBackwardDataImpl* opr; std::string to_string() const; void init_desc(convolution::CUDNNBwdDataDescs& desc) const { desc.set(filter_meta, *diff_layout, *grad_layout, opr->param()); } SizeArgs(ConvolutionBackwardDataImpl* opr, const TensorLayout& filter, const TensorLayout& diff, const TensorLayout& grad); SizeArgs(ConvolutionBackwardDataImpl* opr, const TensorLayout& filter, const CanonizedFilterMeta& filter_meta, const TensorLayout& diff, const TensorLayout& grad); convolution::ForwardSizeArgs as_fwd_args() const { return {handle, grad_layout, filter_layout, filter_meta, diff_layout}; } }; struct ExecArgs : public SizeArgs { const TensorND *filter_tensor, *diff_tensor, *grad_tensor; Workspace workspace; ExecArgs(ConvolutionBackwardDataImpl* opr, _megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace); }; virtual bool is_available(const SizeArgs& args) const = 0; virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; virtual void exec(const ExecArgs& args) const = 0; bool is_available_wk(const SizeArgs& args, size_t limit) { return is_available(args) && get_workspace_in_bytes(args) <= limit; } bool is_available_reproducible( const SizeArgs& args, bool reproducible = true, size_t limit = std::numeric_limits::max()) { return (!reproducible || is_reproducible()) && is_available_wk(args, limit); } AlgoBase& check_workspace(const SizeArgs& args, const Workspace& workspace) { auto req = get_workspace_in_bytes(args); megdnn_assert(req <= workspace.size, "conv bwd data algo %s: " "required workspace %zu bytes, got %zu", name(), req, workspace.size); return *this; } virtual bool is_cudnn() const { return false; } }; class ConvolutionBackwardDataImpl::AlgoCUDNN final : public AlgoBase { cudnnConvolutionBwdDataAlgo_t m_cudnn_enum; CudnnAlgoPack::Attr m_attr; public: AlgoCUDNN(cudnnConvolutionBwdDataAlgo_t cudnn_enum) : m_cudnn_enum(cudnn_enum) { megdnn_assert(CudnnAlgoPack::conv_bwd_data_algos().find(cudnn_enum) != CudnnAlgoPack::conv_bwd_data_algos().end()); m_attr = CudnnAlgoPack::conv_bwd_data_algos().at(cudnn_enum); } bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; bool is_reproducible() const override { return m_attr.is_reproducible; } const char* name() const override { return m_attr.name.c_str(); } cudnnConvolutionBwdDataAlgo_t cudnn_enum() const { return m_cudnn_enum; } bool is_cudnn() const override { return true; } MEGDNN_DECL_ALGO_TYPE(CUDA_CUDNN) std::string param() const override { std::string ret; serialize_write_pod(m_cudnn_enum, ret); return ret; } }; //! im2col and matmul, with dilation class ConvolutionBackwardDataImpl::AlgoMatmul final : public AlgoBase { template static void exec_internal(const ExecArgs& args); public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return "MATMUL"; } bool is_reproducible() const override { return true; } MEGDNN_DECL_ALGO_TYPE(CUDA_MATMUL) }; class ConvolutionBackwardDataImpl::AlgoChanwise final : public AlgoBase { public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return "CHANNEL_WISE"; } bool is_reproducible() const override { return true; } MEGDNN_DECL_ALGO_TYPE(CUDA_CHANWISE) }; class ConvolutionBackwardDataImpl::AlgoChanwiseSmall final : public AlgoBase { public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return "CHANNEL_WISE_SMALL"; } bool is_reproducible() const override { return true; } MEGDNN_DECL_ALGO_TYPE(CUDA_CHANWISE_SMALL) }; class ConvolutionBackwardDataImpl::AlgoBFloat16 final : public AlgoBase { public: AlgoBFloat16(ConvolutionBackwardDataImpl::AlgoBase*); bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return m_name.c_str(); } bool is_reproducible() const override { return true; } private: std::string m_name; ConvolutionBackwardDataImpl::AlgoBase* m_algorithm = nullptr; SizeArgs float_args(const SizeArgs& args, ConvolutionBackwardDataImpl* opr, TensorLayout& fsrc, TensorLayout& ffilter, TensorLayout& fdst) const; WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; MEGDNN_DECL_ALGO_TYPE(CUDA_BFLOAT16) std::string param() const override { std::string ret; serialize_write_pod(m_algorithm, ret); return ret; } }; //! implement group conv by another algo class ConvolutionBackwardDataImpl::AlgoGroupConvGeneral final : public AlgoBase { AlgoBase* m_impl; std::string m_name; public: AlgoGroupConvGeneral(AlgoBase* impl); bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; const char* name() const override { return m_name.c_str(); } bool is_reproducible() const override { return m_impl->is_reproducible(); } static void modify_size_args(SizeArgs& args, TensorLayout& diff_pg, TensorLayout& grad_pg); MEGDNN_DECL_ALGO_TYPE(CUDA_GROUP_CONV_GENERAL) std::string param() const override { std::string ret; serialize_write_pod(m_impl, ret); return ret; } }; class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { // defined in cudnn.cpp void fill_cudnn_algos(); AlgoBase::Mapper m_all_algos_map; public: AlgoPack(); std::vector cudnn; AlgoMatmul matmul; AlgoChanwise chanwise; AlgoChanwiseSmall chanwise_small; std::vector gconv; std::unordered_map algo2gconv; std::vector> bfloat16_refhold; std::vector //! all algorithms all_algos, //! non-cudnn algos, used for heuristic if cudnn is not supported non_cudnn_algos, bfloat16_algos; AlgoCUDNN* cudnn_from_enum(cudnnConvolutionBwdDataAlgo_t algo); const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } }; } // namespace cuda } // namespace megdnn // vim: syntax=cpp.doxygen