/** * \file src/serialization/test/serializer_oss.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #if MGB_ENABLE_FBS_SERIALIZATION #include "megbrain/serialization/serializer.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" #include "megbrain/opr/basic_arith_wrapper.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/test/helper.h" using namespace mgb; using namespace serialization; #define GET_OUTPUT_FILE() output_file(ssprintf("TestSerializer2.%d", __LINE__)) TEST(TestSerializer2, GraphDumpLoad) { auto fname = GET_OUTPUT_FILE(); auto orig_id = -1; auto dump = [&]() { auto cn = CompNode::load("cpu0"); auto graph = ComputingGraph::make(); auto x = opr::ImmutableTensor::make(*graph, 1926.0817f, {cn}); x.rename("varz"); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = dumper->dump({x}); ASSERT_EQ(rst.nr_opr, 1); ASSERT_EQ(rst.inputs.size(), 0); ASSERT_EQ(rst.outputs.size(), 1); ASSERT_EQ(rst.params.size(), 0); orig_id = x.node()->id(); mgb_log("%zu of %zu", rst.tensor_value_bytes, rst.tot_bytes); }; auto load = [&]() { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(rst.tensor_map.size(), 0); ASSERT_EQ(rst.output_var_list.size(), 1); ASSERT_EQ(rst.output_var_map.size(), 1); ASSERT_EQ(rst.output_var_map_id.size(), 1); ASSERT_EQ(rst.output_var_map.count("varz"), 1); ASSERT_EQ(rst.output_var_map_id.count(orig_id), 1); HostTensorND host_x; auto func = rst.graph_compile( {make_callback_copy(rst.output_var_list[0], host_x)}); func->execute().wait(); EXPECT_NEAR(*host_x.ptr(), 1926.0817f, 1e-6); }; dump(); load(); } TEST(TestSerializer2, MultiGraphDumpLoad) { auto fname = GET_OUTPUT_FILE(); auto dump = [&]() { auto cn = CompNode::load("cpu0"); auto graph = ComputingGraph::make(); auto x = opr::ImmutableTensor::make(*graph, 1926.0817f, {cn}); x.rename("varz"); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); // dump twice dumper->dump({x}); dumper->dump({x}); }; auto load = [&]() { GraphLoader::LoadConfig load_config = {}; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); // load twice loader->load(load_config, false); loader = GraphLoader::make(loader->reset_file(), loader->format()); loader->load(load_config, false); }; dump(); load(); } TEST(TestSerializer2, APlusB) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; auto dump = [&]() { auto cn = CompNode::load("xpu0"); auto host_x = std::make_shared(cn, shape), host_y = std::make_shared(cn, shape); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}), y = opr::Host2DeviceCopy::make(*graph, host_y, {"y"}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); // test dump duplicated auto rst = dumper->dump({(x + y).rename("z"), x + y}); ASSERT_EQ(2u, rst.outputs.size()); }; auto load = [&]() { HostTensorGenerator<> gen; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); auto xv = rst.tensor_map.at("x"); auto yv = rst.tensor_map.at("y"); ASSERT_EQ(shape, xv->shape()); ASSERT_EQ(shape, yv->shape()); *xv = *gen(shape); *yv = *gen(shape); HostTensorND host_z, host_z_expect; host_z_expect.copy_from(*xv); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) host_z_expect.ptr()[i] += yv->ptr()[i]; auto func = rst.graph_compile( {make_callback_copy(rst.output_var_map.at("z"), host_z)}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_z_expect, host_z); }; dump(); load(); } TEST(TestSerializer2, APlusBParam) { auto cns = load_multiple_xpus(2); auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; HostTensorGenerator<> gen; auto bias = std::make_shared(); auto bias_hv = gen(shape, cns[0]); bias->copy_from(*bias_hv); { // dump auto host_x = std::make_shared(cns[0], shape); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}), y = opr::SharedDeviceTensor::make(*graph, bias, {"y"}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); GraphDumper::DumpConfig config; config.keep_param_name = true; dumper->dump({(x + y).rename("z")}, config); } auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto load = [&](CompNode dest_cn) { auto dest_cn_loc = dest_cn.locator_logical(); auto rst = loader->load({ [&](CompNode::Locator &loc){ loc = dest_cn_loc;}}); auto xv = rst.tensor_map.at("x"); ASSERT_EQ(1u, rst.tensor_map.size()); ASSERT_EQ(shape, xv->shape()); *xv = *gen(shape, cns[0]); HostTensorND host_z, host_z_expect; host_z_expect.copy_from(*xv); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) host_z_expect.ptr()[i] += bias_hv->ptr()[i]; auto func = rst.graph_compile( {make_callback_copy(rst.output_var_map.at("z"), host_z)}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_z_expect, host_z); }; load(cns[0]); auto &&shmap = loader->shared_tensor_name_map(); ASSERT_EQ(1u, shmap.at("y")->size()); load(cns[0].change_stream(1)); ASSERT_EQ(1u, shmap.at("y")->size()); load(cns[1]); ASSERT_EQ(1u + (cns[1].mem_node() != cns[0].mem_node()), shmap.at("y")->size()); } TEST(TestSerializer2, Immutable) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; auto dump = [&]() { auto cn = CompNode::load("xpu0"); auto host_x = std::make_shared(cn, shape); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({(x + 1.f).rename("y")}); }; auto load = [&]() { HostTensorGenerator<> gen; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); auto xv = rst.tensor_map.at("x"); ASSERT_EQ(shape, xv->shape()); *xv = *gen(shape); HostTensorND host_y, host_y_expect; host_y_expect.copy_from(*xv); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) host_y_expect.ptr()[i] += 1; auto func = rst.graph_compile( {make_callback_copy(rst.output_var_map.at("y"), host_y)}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y); }; dump(); load(); } TEST(TestSerializer2, CustomLoader) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; int load_nr_null_ptr = 0, load_nr_call = 0; std::vector saved_val; auto tensor_value_dumper = [&saved_val]( OutputFile &fout, const cg::OperatorNodeBase &opr, const HostTensorND &tensor) { size_t idx = saved_val.size(); saved_val.emplace_back(); saved_val.back().copy_from(tensor); fout.write(&idx, sizeof(idx)); }; auto tensor_value_loader = [&saved_val, &load_nr_null_ptr, &load_nr_call]( void *ptr, const TensorLayout &layout, InputFile &fin) { ++ load_nr_call; size_t idx; if (!ptr) { load_nr_null_ptr ++; fin.skip(sizeof(idx)); return; } fin.read(&idx, sizeof(idx)); auto &&val = saved_val.at(idx); ASSERT_TRUE(val.layout().eq_layout(layout)); memcpy(ptr, val.raw_ptr(), layout.span().high_byte); }; auto dump = [&]() { auto cn = CompNode::load("xpu0"); auto host_x = std::make_shared(cn, shape); HostTensorND y_val(cn, {1}); y_val.ptr()[0] = 2.3f; auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}), y = opr::SharedDeviceTensor::make(*graph, y_val), z = ((x + 1.f) * y).rename("z"); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); GraphDumpConfig config; config.tensor_value_dumper = tensor_value_dumper; dumper->dump({z}, config); }; dump(); GraphLoadConfig config; config.tensor_value_loader = tensor_value_loader; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto load = [&]() { HostTensorGenerator<> gen; auto rst = loader->load(config); auto xv = rst.tensor_map.at("x"); ASSERT_EQ(shape, xv->shape()); *xv = *gen(shape); HostTensorND host_y, host_y_expect; host_y_expect.copy_from(*xv); auto py = host_y_expect.ptr(); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) { py[i] = (py[i] + 1.f) * 2.3f; } auto func = rst.graph_compile( {make_callback_copy(rst.output_var_map.at("z"), host_y)}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y); }; load(); load(); ASSERT_EQ(2u, saved_val.size()); ASSERT_EQ(1, load_nr_null_ptr); // immutable tensor is not shared ASSERT_EQ(4, load_nr_call); } TEST(TestSerializer2, ManyIOVars) { auto fname = GET_OUTPUT_FILE(); constexpr size_t NR_VARS = 32; auto dump = [&]() { auto graph = ComputingGraph::make(); SymbolVarArray xs; cg::OperatorNodeConfig::CompNodeArray y_comp_nodes; for (size_t i = 0; i < NR_VARS; ++ i) { CompNode::Locator loc; loc.type = CompNode::DeviceType::CPU; loc.device = 0; loc.stream = i; auto cn = CompNode::load(loc); auto host_x = std::make_shared(cn, TensorShape{1}); xs.push_back(opr::Host2DeviceCopy::make( *graph, host_x, std::to_string(i))); loc.device = 1; y_comp_nodes.push_back(CompNode::load(loc)); } auto con = opr::Concat::make(xs, 0, CompNode::load("cpu2")) * 2 + 1; auto ys = opr::Split::make(con, opr::Split::Options::make_partition( con, 0, std::vector(NR_VARS, 1)), OperatorNodeConfig{}.comp_node_arr(y_comp_nodes)); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = dumper->dump(ys); }; auto load = [&]() { HostTensorGenerator<> gen; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(NR_VARS, rst.output_var_list.size()); ComputingGraph::OutputSpec out_spec(NR_VARS); std::vector host_ys(NR_VARS); for (size_t i = 0; i < NR_VARS; ++ i) { auto y = rst.output_var_list[i]; auto loc = y.node()->comp_node().locator_logical(); ASSERT_EQ(1, loc.device); ASSERT_EQ(static_cast(i), loc.stream); out_spec[i] = make_callback_copy(y, host_ys[i]); auto &&inp = rst.tensor_map.at(std::to_string(i)); inp->resize({1}).ptr()[0] = i; } auto func = rst.graph_compile(out_spec); func->execute(); for (size_t i = 0; i < NR_VARS; ++ i) { auto &&val = host_ys[i]; ASSERT_EQ(TensorShape{1}, val.shape()); ASSERT_EQ(static_cast(i * 2 + 1), val.ptr()[0]); } }; dump(); load(); } TEST(TestSerializer2, RemoveSetGrad) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; auto dump = [&]() { auto cn = CompNode::load("xpu0"); auto host_x = std::make_shared(cn, shape), host_y = std::make_shared(cn, shape); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}), y = opr::Host2DeviceCopy::make(*graph, host_y, {"y"}); auto sg = [](SymbolVar var) { return opr::SetGrad::make(var, opr::SetGrad::zero_grad); }; // SetGrad as output auto z0 = sg(x + y); // SetGrad as internal auto z1 = sg(x) + sg(sg(y)); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({z0, z1}); }; auto load = [&]() { HostTensorGenerator<> gen; auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); auto xv = rst.tensor_map.at("x"); auto yv = rst.tensor_map.at("y"); ASSERT_EQ(shape, xv->shape()); ASSERT_EQ(shape, yv->shape()); *xv = *gen(shape); *yv = *gen(shape); HostTensorND host_z0, host_z1, host_z_expect; host_z_expect.copy_from(*xv); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) host_z_expect.ptr()[i] += yv->ptr()[i]; ASSERT_EQ(2u, rst.output_var_list.size()); auto func = rst.graph_compile({ {make_callback_copy(rst.output_var_list[0], host_z0)}, {make_callback_copy(rst.output_var_list[1], host_z1)}}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_z_expect, host_z0); MGB_ASSERT_TENSOR_EQ(host_z_expect, host_z1); }; dump(); load(); } TEST(TestSerializer2, MultipleParamNDIMDTypeCompNode) { auto fname = GET_OUTPUT_FILE(); std::vector> values; auto add_value = [&](int stream, int ndim, DType dtype) { CompNode::Locator loc; loc.type = CompNode::DeviceType::CPU; loc.device = 0; loc.stream = stream; auto cn = CompNode::load(loc); TensorShape shp; shp.ndim = ndim; for (int i = 0; i < ndim; ++ i) shp[i] = i + 1; auto cur = std::make_shared(cn, shp, dtype); uint8_t *ptr = reinterpret_cast(cur->raw_ptr()); for (size_t i = 0, it = cur->layout().span().dist_byte(); i < it; ++ i) { ptr[i] = i; } values.push_back(cur); return cur; }; auto dump = [&]() { auto graph = ComputingGraph::make(); int stream = 0; auto mkvar = [&](int ndim, DType dtype) { auto dv = add_value(stream ++, ndim, dtype); auto var = opr::SharedDeviceTensor::make(*graph, dv); var = opr::TypeCvt::make( opr::reduce_sum(var, var.make_scalar(1)), dtype::Int32()); var = opr::Copy::make(var, CompNode::load("cpu1")); return var; }; auto x = mkvar(1, dtype::Float32()); for (size_t ndim = 1; ndim <= TensorShape::MAX_NDIM; ++ ndim) { #define cb(_dt) x = x + mkvar(ndim, _dt()); MEGDNN_FOREACH_COMPUTING_DTYPE(cb) #undef cb } ASSERT_GT(values.size(), 8u); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({x}); }; auto load = [&]() { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); ASSERT_THROW(loader->shared_tensor_id_map(), MegBrainError); loader->load(); auto &&got = loader->shared_tensor_id_map(); ASSERT_EQ(values.size(), got.size()); for (size_t i = 0; i < values.size(); ++ i) { ASSERT_EQ(1u, got[i].second.size()); auto &&vi = *values[i], &&gi = *got[i].second.begin()->second; ASSERT_EQ(vi.shape(), gi.shape()); ASSERT_EQ(vi.comp_node(), gi.comp_node()); ASSERT_EQ(vi.dtype(), gi.dtype()); ASSERT_EQ(0, memcmp(vi.raw_ptr(), gi.raw_ptr(), vi.layout().span().dist_byte())); } }; dump(); load(); } TEST(TestSerializer2, ConstVarShape) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; HostTensorGenerator<> gen; auto host_x = gen({2, 3}); { // dump auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({x + 1.f}); } auto run_and_check = [&](const GraphLoadConfig& config) { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(config); rst.tensor_map.at("x")->copy_from(*host_x); auto y = rst.output_var_list[0]; ASSERT_EQ(shape, y.shape()); auto infer_type = y.node()->owner_graph()->static_infer_manager(). get_infer_type(y.node()).shape; if (config.const_var_shape) { ASSERT_EQ(cg::static_infer::InferType::CONST, infer_type); } else { ASSERT_EQ(cg::static_infer::InferType::RT_STATIC, infer_type); } HostTensorND host_y, host_y_expect; host_y_expect.copy_from(*host_x); for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++ i) host_y_expect.ptr()[i] += 1; auto func = rst.graph_compile({make_callback_copy(y, host_y)}); func->execute(); MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y); if (config.const_var_shape) { rst.tensor_map.at("x")->resize({4, 5}); ASSERT_THROW(func->execute(), MegBrainError); } }; for (bool const_shape: {false, true}) { GraphLoadConfig config; config.const_var_shape = const_shape; run_and_check(config); }; // test const shape with tensor modifier { int nr_tensor = 0, nr_mod = 0; shape = {7, 6}; *host_x = *gen(shape); GraphLoadConfig config; config.const_var_shape = true; config.tensor_modifier = [&](const std::string& name, bool has_value, HostTensorND& tensor) { ++nr_tensor; if (!has_value) { ASSERT_EQ("x", name); tensor.resize(shape); ++nr_mod; } }; run_and_check(config); ASSERT_EQ(2, nr_tensor); ASSERT_EQ(1, nr_mod); } } TEST(TestSerializer2, ConstVarShapeOutputName) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; HostTensorGenerator<> gen; auto host_x = gen({2, 3}); { // dump auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}), y = opr::GetVarShape::make(x) + 1; y.rename("out"); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({y}); } { // load auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); GraphLoadConfig config; config.const_var_shape = true; auto rst = loader->load(config); ASSERT_EQ(1u, rst.tensor_map.count("x")); auto y = rst.output_var_map.at("out"); ASSERT_TRUE(y.node()->owner_opr()->same_type()); } } TEST(TestSerializer2, Priority) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3}; auto dump = [&](bool keep_pri) { auto cn = CompNode::load("xpu0"); auto host_x = std::make_shared(cn, shape), host_y = std::make_shared(cn, shape); auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}) + 1, y = opr::Host2DeviceCopy::make(*graph, host_y, {"y"}) + 1; set_priority(x, 1); set_priority(y, 2); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); GraphDumper::DumpConfig config; if (keep_pri) { config.keep_opr_priority = true; } dumper->dump({x * y}, config); }; auto load = [&](bool has_pri) { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); VarNode* x, *y; unpack_vector(rst.output_var_list.front().node()->owner_opr()->input(), x, y); auto get_pri = [](VarNode *var) { return var->owner_opr()->node_prop().attribute().priority; }; int xpri = get_pri(x), ypri = get_pri(y); if (has_pri) { ASSERT_EQ(1, xpri); ASSERT_EQ(2, ypri); } else { ASSERT_EQ(0, xpri); ASSERT_EQ(0, ypri); } }; dump(false); load(false); dump(true); load(true); } TEST(TestSerializer2, MultipleParams) { auto fname = GET_OUTPUT_FILE(); HostTensorGenerator<> gen; std::vector> tensors{ gen({2, 3}), gen({1}), gen({3, 2}), gen({1, 1})}; auto dump = [&]() { auto graph = ComputingGraph::make(); SymbolVarArray outputs; for (auto&& i : tensors) { outputs.push_back(opr::SharedDeviceTensor::make(*graph, *i)); } GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS) ->dump(outputs); }; auto load = [&]() { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(tensors.size(), rst.output_var_list.size()); for (size_t i = 0; i < tensors.size(); ++i) { HostTensorND got; got.copy_from(rst.output_var_list[i] .node() ->owner_opr() ->cast_final_safe() .get_dev_tensor()) .sync(); MGB_ASSERT_TENSOR_EQ(*tensors[i], got); } }; dump(); load(); } TEST(TestSerializer2, ParamerizedDType) { auto fname = GET_OUTPUT_FILE(); TensorShape shape{2, 3, 3}; dtype::Quantized8Asymm dtype(0.01f, (uint8_t) 123); auto dump = [&]() { auto cn = CompNode::load("cpu0"); auto host_x = std::make_shared(cn, shape, dtype); for (size_t i = 0; i < host_x->layout().span().dist_elem(); i++) { host_x->ptr()[i] = dt_quint8(static_cast(i & 255)); } auto graph = ComputingGraph::make(); auto x = opr::Host2DeviceCopy::make(*graph, host_x, {"x"}); auto rst = opr::Dimshuffle::make(x, {1, 2, 0}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({rst}); }; auto load = [&]() { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(rst.output_var_list.size(), 1u); EXPECT_EQ(rst.output_var_list.front().node()->dtype(), dtype); }; dump(); load(); } TEST(TestSerializer2, HasOutputDtype) { auto fname = GET_OUTPUT_FILE(); HostTensorGenerator<> gen; auto graph = ComputingGraph::make(); auto gen_tensor = [&](const TensorShape& shape, const DType& dtype) { return opr::TypeCvt::make( opr::Host2DeviceCopy::make(*graph, gen(shape)), dtype); }; auto dump = [&]() { auto x = gen_tensor({20, 4, 56, 56}, dtype::QuantizedS8(0.5f)); auto w = gen_tensor({4, 4, 1, 1}, dtype::QuantizedS8(0.1f)); auto b = gen_tensor({1, 4, 1, 1}, dtype::QuantizedS32(0.05f)); opr::ConvBias::Param param; auto y0 = opr::ConvBias::make( x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS32(0.05f)}); auto y1 = opr::ConvBias::make( x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(0.3f)}); auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); dumper->dump({y0, y1}); }; auto check = [](const serialization::GraphLoader::LoadResult& rst, size_t idx, const DType& expected_dtype) { auto&& dtype = rst.output_var_list[idx] .node()->owner_opr()->config().output_dtype(); ASSERT_TRUE(dtype.valid()); ASSERT_EQ(dtype, expected_dtype); }; auto load = [&]() { auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS); auto rst = loader->load(); ASSERT_EQ(rst.output_var_list.size(), 2u); check(rst, 0, dtype::QuantizedS32(0.05f)); check(rst, 1, dtype::QuantizedS8(0.3f)); }; dump(); load(); } #endif