#pragma once #include "megdnn/internal/opr_header_prologue.h" #include "megdnn/thin/small_vector.h" namespace megdnn { /*! * \brief standard element-wise operator * * Inputs must have same dtype, and their shapes must broadcastable into a final * shape. They can have arbitrary layouts, but non-contiguous and non-broadcast * layouts may harm performance seriously. * * Output dtype is the same as input dtype (note that even for compare oprs this * is true, e.g. float == float returns value of float). Output layout must be * contiguous. */ class ElemwiseForward : public OperatorBase { DEF_OPR_PARAM(Elemwise); DEF_OPR_IMPL(ElemwiseForward, OperatorBase, -1, 1); public: using Mode = Param::Mode; //! information about a mode struct ModeTrait { uint32_t arity; //!< number of inputs needed bool commutable; //!< whether arity == 2 and inputs commutable bool allow_int; //!< whether int inputs allowed bool allow_float; //!< whether float inputs allowed bool allow_bool; //!< whether bool inputs allowed const char* name; //!< name of the mode ModeTrait() : arity(0), commutable(0), allow_int(0), allow_float(0), allow_bool(0), name(NULL) {} //! get trait from a mode; this function is thread safe MGE_WIN_DECLSPEC_FUC static const ModeTrait& from_mode(Mode mode); }; //! get trait of current mode const ModeTrait& mode_trait() const { return ModeTrait::from_mode(m_param.mode); } /** * \param[in] src input tensor * \param[out] dst output tensor * * src and dst should have the same shape; * layouts should be contiguous; * the underlying data pointer can point to the same memory region for * src and dst. */ virtual void exec(_megdnn_in const TensorNDArray& src, _megdnn_tensor_out dst) = 0; //! deduce output shape (do not check whether arity matches) MGE_WIN_DECLSPEC_FUC static void deduce_shape( const TensorShapeArray& src, TensorShape& dst); MGE_WIN_DECLSPEC_FUC static void deduce_format( const TensorFormatArray& src, TensorFormat& dst); //! deduce output layout MGE_WIN_DECLSPEC_FUC void deduce_layout( const TensorLayoutArray& src, TensorLayout& dst); protected: //! throw exception if incorrect layout; broadcast input shape to //! output shape MGE_WIN_DECLSPEC_FUC void check_layout_and_broadcast( const TensorLayoutPtrArray& src, const TensorLayout& dst); private: void check_dtype(DType dtype); }; using Elemwise = ElemwiseForward; /*! * \brief compute ``x**a`` where ``a`` is a constant from the Param * * This opr is usually not directly accessible by the end user and it is created * by mgb optimizer, aiming to work around numerical stability issues with pow. * For example ``powf(x, 2.f)`` with ``x < 0`` in fast math mode may return NaN. * * Like elemwise, this opr supports arbitrary strides. But it should only be * used with monotone strides. Input and output should have the same * float-category dtype. */ class PowC : public OperatorBase { DEF_OPR_PARAM(PowC); DEF_OPR_IMPL(PowC, OperatorBase, 1, 1); public: void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst); //! compatible API for mgb; workspace is not used void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace) { return exec(src, dst); } size_t get_workspace_in_bytes(const TensorLayout&, const TensorLayout&) { // the impls should require no workspace; this can be later changed to a // virtual function if this situation changes return 0; } void deduce_layout(const TensorLayout& src, TensorLayout& dst) { dst.dtype = src.dtype; dst.init_contiguous_stride(src); } protected: /*! * Perform the computing where layouts have been verified. * * \p src can have arbitrary layout, and \p dst is contiguous. They have the * same shape and dtype. * * The implementation should not access param(). It should check \p exp_f * and \p exp_i for the exponent value. Exactly one of them would be * non-null. * * Note: \p exp_f and \p exp_i must be dereferenced before dispatching any * kernel. They are allocated on the caller's stack. */ virtual void do_exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, const float* exp_f, const int* exp_i) = 0; }; /*! * \brief modify a tensor inplace by adding another tensor to it * * dst and delta can have arbitrary layout but must have the same shape. */ class AddUpdateForward : public OperatorBase { DEF_OPR_PARAM(AddUpdate); DEF_OPR_IMPL(AddUpdateForward, OperatorBase, -1, 1); public: virtual void exec(_megdnn_tensor_inout dst, _megdnn_tensor_in delta) = 0; protected: void check_exec(const TensorLayout& dst, const TensorLayout& delta); }; using AddUpdate = AddUpdateForward; class ReduceForward : public OperatorBase { DEF_OPR_PARAM(Reduce); DEF_OPR_IMPL(ReduceForward, OperatorBase, 1, 1); public: using Mode = Param::Mode; using DataType = Param::DataType; /** * \param[in] src input tensor * \param[out] dst output tensor * * src and dst should be contiguous. * src and dst should be of the same shape for all dimensions except * param().axis. * the param().axis-th dimension shape for dst should be one. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; MGE_WIN_DECLSPEC_FUC void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Reduce = ReduceForward; class CorrelationBase : public OperatorBase { DEF_OPR_IMPL_CTOR(CorrelationBase, OperatorBase); DEF_OPR_PARAM(Correlation); protected: void deduce_layout_fwd( const TensorLayout& data1, const TensorLayout& data2, TensorLayout& dst); void check_layout_fwd( const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& dst); }; class CorrelationForward : public CorrelationBase { DEF_OPR_IMPL(CorrelationForward, CorrelationBase, 2, 1); public: /** * \param[in] data1 (n, c, ih, iw) * \param[in] data2 (n, c, ih, iw) * \param[out] dst (n, q, oh, ow), q is the number of neighborhood * */ virtual void exec( _megdnn_tensor_in data1, _megdnn_tensor_in data2, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout( const TensorLayout& data1, const TensorLayout& data2, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& dst, size_t workspace_in_bytes); }; using Correlation = CorrelationForward; class CorrelationBackwardData1 : public CorrelationBase { DEF_OPR_IMPL(CorrelationBackwardData1, CorrelationBase, 3, 1); public: /** * \param[in] diff the backpropagated gradient wrt. dst * \param[in] data1 the `data1' parameter in CorrelationForward::exec * \param[in] data2 the `data2' parameter in CorrelationForward::exec * \param[out] grad1 the backpropagated gradient wrt. data1 */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_in data1, _megdnn_tensor_in data2, _megdnn_tensor_out grad1, _megdnn_workspace workspace) = 0; void deduce_layout( const TensorLayout& diff1, const TensorLayout& data1, const TensorLayout& data2, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& grad1) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& grad1, size_t workspace_in_bytes); }; class CorrelationBackwardData2 : public CorrelationBase { DEF_OPR_IMPL(CorrelationBackwardData2, CorrelationBase, 3, 1); public: /** * \param[in] diff the backpropagated gradient wrt. dst * \param[in] data1 the `data1' parameter in CorrelationForward::exec * \param[in] data2 the `data2' parameter in CorrelationForward::exec * \param[out] grad2 the backpropagated gradient wrt. data2 */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_in data1, _megdnn_tensor_in data2, _megdnn_tensor_out grad2, _megdnn_workspace workspace) = 0; void deduce_layout( const TensorLayout& diff1, const TensorLayout& data1, const TensorLayout& data2, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& grad2) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& data1, const TensorLayout& data2, const TensorLayout& grad2, size_t workspace_in_bytes); }; class CumsumForward : public OperatorBase { DEF_OPR_PARAM(Cumsum); DEF_OPR_IMPL(CumsumForward, OperatorBase, 1, 1); public: /** * \param[in] src input tensor * \param[out] dst output tensor * * src and dst should be contiguous. * src and dst should have the same shape. * * The exclusive flag specifies whether the current element it taken * into account when calculating results. * * The reverse flag specifies whether cumsum is forward ( * from 0 to n) or backward (from n downto 0). * * Example: * exclusive && reverse: * dst_i = src_{i+1} + src_{i+2} + ... + src_{n-1} * exclusive && !reverse * dst_i = src_0 + src_1 + ... + src_{i-1} * !exclusive && reverse: * dst_i = src_i + src_{i+1} + ... + src_{n-1} * !exclusive && !reverse: * dst_i = src_0 + src_1 + ... + src_i */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Cumsum = CumsumForward; // mxx can be max or min class ArgmxxBase : public OperatorBase { DEF_OPR_IMPL_CTOR(ArgmxxBase, OperatorBase); DEF_OPR_PARAM(Axis); protected: void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst); }; class ArgmaxForward : public ArgmxxBase { DEF_OPR_IMPL(ArgmaxForward, ArgmxxBase, 1, 1); public: /** * \param[in] src input tensor * \param[out] dst output tensor containing the argmax indices * * src and dst should be contiguous. * src and dst should be of the same shape for all dimensions except * param().axis. * the param().axis-th dimension shape for dst should be one. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Argmax = ArgmaxForward; class ArgminForward : public ArgmxxBase { DEF_OPR_IMPL(ArgminForward, ArgmxxBase, 1, 1); public: /** * \param[in] src input tensor * \param[out] dst output tensor containing the argmax indices * * src and dst should be contiguous. * src and dst should be of the same shape for all dimensions except * param().axis. * the param().axis-th dimension shape for dst should be one. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Argmin = ArgminForward; /*! * \brief take values from input according to given condition * * Output two tensors: * 1. values copied from *data*, with same dtype as *data* * 2. selected indices with dtype int32; note that it is 1-dimensional and * based on the flatten input. * * Require data and mask to have the same shape and both be contiguous. */ class CondTake : public OperatorBase { DEF_OPR_IMPL(CondTake, OperatorBase, 2, 2); DEF_OPR_PARAM(CondTake); public: using Output = std::array; using OutputDType = std::array; OutputDType infer_dtype(DType data, DType mask); virtual size_t get_workspace_in_bytes(const TensorLayout& data) = 0; virtual Output exec( _megdnn_tensor_in data, _megdnn_tensor_in mask, _megdnn_workspace workspace, DynOutMallocPolicyCall malloc_policy) = 0; protected: //! check input layouts and get flattened size size_t check_exec_get_size( const TensorLayout& data, const TensorLayout& mask, size_t workspace_in_bytes); }; class TransposeForward : public OperatorBase { DEF_OPR_IMPL(TransposeForward, OperatorBase, 1, 1); DEF_OPR_PARAM(Empty); public: /** * \param[in] src (m, n) stride[0] >= n && stride[1] == 1 * \param[out] dst (n, m) stride[0] >= m && stride[1] == 1 */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Transpose = TransposeForward; /** * Change a tensor to another layout that has the same dtype and total number of * elements, and non-overlapping stride. * * ON CPU: * This operator is optimized for some cases(e.g. both dst and last dim of src * are contiguous) * * ON CUDA: * More contiguous the input/output layouts, higher performance. There is also * special optimization for broadcast case. */ class RelayoutForward : public OperatorBase { DEF_OPR_IMPL(RelayoutForward, OperatorBase, 1, 1); DEF_OPR_PARAM(Empty); public: /*! * \brief execute relayout opr * * This operator should be placed on the same computing device of *dst*. * * \param src_handle handle of input tensor; for CUDA d2d copy, the * src handle can be on a different GPU for copy tensor with * non-contig dims <= 2 */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, Handle* src_handle = nullptr) = 0; protected: //! check layout and collapse contiguous void check_layout_and_canonize(TensorLayout& src, TensorLayout& dst); }; using Relayout = RelayoutForward; /** * \brief Base class for Concat and Split operators */ class ConcatSplitBase : public OperatorBase { public: using Param = param::Axis; ConcatSplitBase(Handle* handle); const Param& param() const { return m_param; } Param& param() { return m_param; } protected: void check_layout_common(const TensorLayoutArray& srcs, const TensorLayout& dst); Param m_param; /** * \brief a helper function * * A = shape[0] * shape[1] * ... * shape[axis-1] * B = {srcs[0].shape[axis], srcs[1].shape[axis], ...} * C = shape[axis+1] * shape[axis+2] * ... * shape[ndim-1] */ void get_ABC(const TensorShapeArray& srcs, size_t& A, size_t* B, size_t& C); thin_function m_get_layout; thin_function m_get_shape; }; class ConcatForward : public ConcatSplitBase { DEF_OPR_IMPL(ConcatForward, ConcatSplitBase, 1, 1); public: /** * \param[in] srcs a vector containing all inputs to be concatenated * \param[out] dst the output tensor. * * All tensors in srcs and dst should be contiguous. * All tensors should have the same shape for all axes except * param().axis. * For the param().axis-th axis, the axis shape for dst should be the * sum of corresponding axis shapes for all srcs. */ virtual void exec( _megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayoutArray& srcs, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayoutArray& srcs, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayoutArray& srcs, const TensorLayout& dst, size_t workspace_in_bytes); }; using Concat = ConcatForward; class SplitForward : public ConcatSplitBase { DEF_OPR_IMPL(SplitForward, ConcatSplitBase, 1, 1); public: /** * \param[in] src input tensor * \param[out] dsts a vector containing all splitted result * * All tensors in src and dsts should be contiguous. * All tensors should have the same shape for all axes except * param().axis. * For the param().axis-th axis, the axis shape for src should be the * sum of corresponding axis shapes for all dsts. */ virtual void exec( _megdnn_tensor_in src, const TensorNDArray& dsts, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayoutArray& dsts) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayoutArray& dsts, size_t workspace_in_bytes); }; using Split = SplitForward; /** * \brief Base class for ParamPackConcat and ParamPackSplit Operators. * * ParamPack oprs act like Concat and Split, but they also are optimized for a * large number of inputs and can handle alignment requirements. Axis is also * not supported. * * The offsets can be generated by gen_offsets(). */ class ParamPackConcatSplitBase : public OperatorBase { protected: void check_exec( const TensorLayout& concated, const TensorLayout& offsets, const TensorLayout& parts); public: using Param = megdnn::param::Empty; ParamPackConcatSplitBase(Handle* handle) : OperatorBase(handle) {} //! generate offsets to be used with ParamPackConcat and ParamPackSplit MGE_WIN_DECLSPEC_FUC static std::vector gen_offsets( const TensorShapeArray& shapes, size_t alignment, size_t dtype_size); }; /** * \brief ParamPackConcat, used for calculating gradient of ParamPackSplit * Combine multiple gradient tensors into a single large tensor, use copy * strategy due to AddUpdate or other dynamic situation. */ class ParamPackConcat : public ParamPackConcatSplitBase { DEF_OPR_IMPL(ParamPackConcat, ParamPackConcatSplitBase, 2, 1); public: /* * \param[in] srcs: TensorND on cpu. srcs[i] corresponding to the * address of i-th Tensor. * \param[in] offsets: with size `2 * srcs.shape[0]`. * offsets[i * 2] and offsets[i * 2 + 1] means * the begin and the end of srcs[i]'s offsets in dst * \param[out] dst: output TensorND, live on cpu or gpu */ virtual void exec( _megdnn_tensor_in srcs, _megdnn_tensor_in offsets, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorShapeArray& srcs, const TensorShape& offsets, const TensorShape& dst) = 0; }; /** * \brief base class for Tile and Repeat */ class TileRepeatBase : public OperatorBase { public: TileRepeatBase(Handle* handle) : OperatorBase(handle) {} struct Param { TensorShape times; }; Param& param() { return m_param; } const Param& param() const { return m_param; } protected: void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst); void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst); /** * Assuming src/dst/times are already simplified on entrance. */ size_t get_workspace_in_bytes_fwd( const TensorShape& src, const TensorShape& dst, const TensorShape& times, DType dtype); Param m_param; }; class TileBase : public TileRepeatBase { public: TileBase(Handle* handle) : TileRepeatBase(handle) {} protected: void simplify_shape( const TensorShape& src, const TensorShape& dst, const TensorShape& times, TensorShape& src2, TensorShape& dst2, TensorShape& times2); /** * This is a helper function that would facilitate other backends' * implementation. */ size_t get_workspace_in_bytes_fwd(const TensorLayout& src, const TensorLayout& dst); }; class TileForward : public TileBase { DEF_OPR_IMPL(TileForward, TileBase, 1, 1); public: /** * \brief Tile src times to get dst. * \param[in] src input tensor * \param[out] dst output tensor * \param[out] workspace temporary workspace * * src and dst must be contiguous. * dst.shape should be {src.shape[0]*param().times[0], * src.shape[1]*param().times[1], ...} * * \see http://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html * * Difference between Tile and Repeat: * Tiling `abc' twice yields `abcabc', whereas repeating `abc' twice * yields `aabbcc'. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Tile = TileForward; class TileBackward : public TileBase { DEF_OPR_IMPL(TileBackward, TileBase, 1, 1); public: /** * \param[in] diff the backpropagated gradient wrt. dst * \param[out] grad the backpropagated gradient wrt. src * \param[out] workspace temporary workspace */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& grad) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& grad, size_t workspace_in_bytes); }; class RepeatBase : public TileRepeatBase { public: RepeatBase(Handle* handle) : TileRepeatBase(handle) {} protected: void simplify_shape( const TensorShape& src, const TensorShape& dst, const TensorShape& times, TensorShape& src2, TensorShape& dst2, TensorShape& times2); /** * This is a helper function that would facilitate other backends' * implementation. */ size_t get_workspace_in_bytes_fwd(const TensorLayout& src, const TensorLayout& dst); }; class RepeatForward : public RepeatBase { DEF_OPR_IMPL(RepeatForward, RepeatBase, 1, 1); public: /** * \brief Repeat src times to get dst. * \param[in] src input tensor * \param[out] dst output tensor * \param[out] workspace temporary workspace * * src and dst must be contiguous. * dst.shape should be {src.shape[0]*param().times[0], * src.shape[1]*param().times[1], ...} * * \see http://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html * \see TileForward */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; using Repeat = RepeatForward; class RepeatBackward : public RepeatBase { DEF_OPR_IMPL(RepeatBackward, RepeatBase, 1, 1); public: /** * \param[in] diff the backpropagated gradient wrt. dst * \param[out] grad the backpropagated gradient wrt. src * \param[out] workspace temporary workspace */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& grad) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& grad, size_t workspace_in_bytes); }; class ArgsortForward : public OperatorBase { DEF_OPR_IMPL(ArgsortForward, OperatorBase, 1, 2); DEF_OPR_PARAM(Argsort); public: using Order = Param::Order; /** * \param[in] src (m, n) * \param[out] dst (m, n) * \param[out] indices (m, n) * * src, dst and indices should be contiguous. * Performing m independent sorting on m arrays of length n. * Sorting arrays and storing the resulting array in `dst', * and the corresponding indices in `indices'. * * Indices range from 0 to n-1. * * Note that indices is a TensorND of type int. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_tensor_out indices, _megdnn_workspace workspace) = 0; void deduce_layout( const TensorLayout& src, TensorLayout& dst, TensorLayout& indices); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst, const TensorLayout& indices) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, const TensorLayout& indices, size_t workspace_in_bytes); }; using Argsort = ArgsortForward; /*! * \brief backward opr for Argsort * * Note: the name is kept for backward compatibility. This opr is actually a * batched value setter. It is used for gradient computing of Argsort and TopK. */ class ArgsortBackward : public OperatorBase { DEF_OPR_IMPL(ArgsortBackward, OperatorBase, 2, 1); DEF_OPR_PARAM(Empty); public: /** * \param[in] diff (m, k) the backpropagated gradient wrt. dst * \param[in] indices (m, k) the `indices' parameter in * ArgsortForward::exec * \param[out] grad (m, n) the backpropagated gradient wrt. src * * Constraint: n >= k. Untouched values would be initialized as zero. */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_in indices, _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& indices, const TensorLayout& grad) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& indices, const TensorLayout& grad, size_t workspace_in_bytes); }; class TopK : public OperatorBase { DEF_OPR_IMPL(TopK, OperatorBase, 1, 2); DEF_OPR_PARAM(TopK); protected: //! impl exec; inputs have been validated virtual void do_exec( int k, _megdnn_tensor_in data, _megdnn_tensor_out values, int32_t* indices, _megdnn_workspace workspace) = 0; public: /*! * \param[in] k if positive, compute the smallest top-k values; otherwise * compute the largest top-k values * \param[in] data (m, n) input data, where top-k is computed on the * second axis. The second dimension must be contiguous, and the first * dimension can have arbitrary stride. * \param[out] values (m, ) or (m, k) output values; its shape depends * on mode * \param[out] indices () or (m, ) or (m, k) output values; its shape * depends on mode */ void exec( int k, _megdnn_tensor_in data, _megdnn_tensor_out values, _megdnn_tensor_out indices, _megdnn_workspace workspace); virtual size_t get_workspace_in_bytes( int k, const TensorLayout& data, const TensorLayout& values, const TensorLayout& indices) = 0; void deduce_layout( int k, const TensorLayout& data, TensorLayout& values, TensorLayout& indices); }; /*! * \brief convert dtype of *src* to match dtype of *dst*; *src* may have * arbitrary layout and *dst* must be contiguous. */ class TypeCvtForward : public OperatorBase { DEF_OPR_PARAM(Empty); DEF_OPR_IMPL(TypeCvtForward, OperatorBase, 1, 1); public: virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) = 0; protected: void check_exec(const TensorLayout& src, const TensorLayout& dst); }; using TypeCvt = TypeCvtForward; class IndexingRemapBase : public OperatorBase { public: using Param = param::IndexingRemap; IndexingRemapBase(Handle* handle) : OperatorBase(handle) {} Param& param() { return m_param; } const Param& param() const { return m_param; } protected: Param m_param; void check_layout_fwd( const TensorLayout& src, const TensorLayout& map, const TensorLayout& dst); }; class IndexingRemapForward : public IndexingRemapBase { DEF_OPR_IMPL(IndexingRemapForward, IndexingRemapBase, 2, 1); public: /** * \param[in] src input tensor * \param[in] map input map * \param[out] dst output tensor * * Suppose: * the shape of src is \f$(s_0, s_1, ..., s_{m-1}\f$; * the shape of dst is \f$(d_0, d_1, ..., d_{n-1})\f$; * then: * the shape of map must be \f$(d_0, d_1, ..., d_{n-1}, m)\f$. * * The last dimension of map indicates the src indices for the * corresponding dst entry. * * src and dst can be non-contiguous in a non-overlapping manner. */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_in map, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout( const TensorLayout& src, const TensorLayout& map, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& map, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& map, const TensorLayout& dst, size_t workspace_in_bytes); }; using IndexingRemap = IndexingRemapForward; // The using directives preserve backward compatibility. using TensorRemapForward = IndexingRemap; using TensorRemap = TensorRemapForward; class IndexingRemapBackward : public IndexingRemapBase { DEF_OPR_IMPL(IndexingRemapBackward, IndexingRemapBase, 2, 1); public: /** * \param[in] diff the backpropagated gradient wrt. dst * \param[in] map the `map' parameter in IndexingRemapForward::exec * \param[out] grad the backpropagated gradient wrt. src */ virtual void exec( _megdnn_tensor_in diff, _megdnn_tensor_in map, _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& diff, const TensorLayout& map, const TensorLayout& grad) = 0; protected: void check_exec( const TensorLayout& diff, const TensorLayout& map, const TensorLayout& grad, size_t workspace_in_bytes); }; // The using directives preserve backward compatibility. using TensorRemapBackward = IndexingRemapBackward; class Linspace : public OperatorBase { DEF_OPR_IMPL(Linspace, OperatorBase, 0, 1); DEF_OPR_PARAM(LinspaceFull); public: /** * \param[out] dst must be 1d. * * \see http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html */ virtual void exec(_megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes(const TensorLayout& dst) = 0; protected: void check_exec(const TensorLayout& dst, size_t workspace_in_bytes); }; class Eye : public OperatorBase { DEF_OPR_IMPL(Eye, OperatorBase, 0, 1); DEF_OPR_PARAM(Eye); public: /** * \see http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html */ virtual void exec(_megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes(const TensorLayout& dst) = 0; protected: void check_exec(const TensorLayout& dst, size_t workspace_in_bytes); }; class Diag : public OperatorBase { DEF_OPR_IMPL(Diag, OperatorBase, 1, 1); DEF_OPR_PARAM(Diag); public: /** * \see http://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html */ virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); }; class IndexingOneHotBase : public OperatorBase { DEF_OPR_IMPL_CTOR(IndexingOneHotBase, OperatorBase); DEF_OPR_PARAM(Axis); protected: void deduce_layout_fwd( const TensorLayout& src, const TensorLayout& index, TensorLayout& dst); void check_layout_fwd( const TensorLayout& src, const TensorLayout& index, const TensorLayout& dst); }; /*! * \brief Indexing for one-hot encoding * * Given src, axis and index, * for all valid (n-1)-dimensional subscript tuples i iterating through index: * dst[i[0], ..., i[axis-1], 0, i[axis], ..., i[n-2]] = * inp[i[0], ..., i[axis-1], index[i], i[axis], ..., i[n-2]] * * \param[in] src n-dimensional input data * \param[in] index (n-1)-dimensional index, must be int * \param[out] dst n-dimensional output data */ class IndexingOneHotForward : public IndexingOneHotBase { DEF_OPR_IMPL(IndexingOneHotForward, IndexingOneHotBase, 2, 1); public: void deduce_layout( const TensorLayout& src, const TensorLayout& index, TensorLayout& dst) { deduce_layout_fwd(src, index, dst); } virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_in index, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& index, const TensorLayout& dst) = 0; protected: void check_exec( const TensorLayout& src, const TensorLayout& index, const TensorLayout& dst, size_t workspace_in_bytes); }; using IndexingOneHot = IndexingOneHotForward; /*! * \brief set-subtensor corresponding to IndexingOneHotForward * * \param[in,out] data n-dimensional input and output data, whose sub part * corresponding to *index* would be replaced by *sub* * \param[in] index (n-1)-dimensional index, must be int * \param[in] sub n-dimensional sub tensor to be filled in *data* */ class IndexingSetOneHotForward : public IndexingOneHotBase { DEF_OPR_IMPL(IndexingSetOneHotForward, IndexingOneHotBase, -1, 1); public: virtual void exec( _megdnn_tensor_inout data, _megdnn_tensor_in index, _megdnn_tensor_in sub, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& data, const TensorLayout& index, const TensorLayout& sub) = 0; protected: void check_exec( const TensorLayout& data, const TensorLayout& index, const TensorLayout& sub, size_t workspace_in_bytes); }; using IndexingSetOneHot = IndexingSetOneHotForward; /*! * \brief base class for indexing on multiple axes using vector indices * * Note that the indexing axes are required to be sorted in ascending order */ class IndexingMultiAxisVecBase : public OperatorBase { DEF_OPR_IMPL_CTOR(IndexingMultiAxisVecBase, OperatorBase); DEF_OPR_PARAM(Empty); public: struct AxisIndexer { size_t axis; TensorND vec; }; struct AxisIndexerLayoutOnly { size_t axis; TensorLayout layout; }; using IndexDesc = std::vector; using IndexDescLayoutOnly = std::vector; /*! * \brief convert IndexDesc to IndexDescLayoutOnly */ static IndexDescLayoutOnly extract_index_layout(const IndexDesc& index); /*! * \brief get the axes on src that are not used in index * \param[out] out output buffer; suggested size is * TensorLayout::MAX_NDIM * \return number of elements written to *out* */ static size_t get_nonindex_axes( size_t src_ndim, const IndexDesc& index, size_t* out); /*! * \brief get contiguous-collapsed layout for indexing on value * \param idx_axis indexer axis on value (i.e. ExecInfo::idx_axis) * \return a tensor layout and an axis to iterate over *value* and also * access *data*; stride of layout on that axis would be zero, and * strides on other axes correspond to the strides in *data* */ static std::tuple get_value_iter_optimized_layout( const TensorLayout& data, const TensorLayout& value, const IndexDesc& index, size_t idx_axis); //! helper info for kernel implementation struct ExecInfo { //! axis in value used by indexer size_t idx_axis; ptrdiff_t value_stride; void* error_tracker; megcore::AsyncErrorInfo* error_info; }; protected: /*! * \return axis on dst used by indexer (i.e. ExecInfo::idx_axis) */ static size_t deduce_layout_fwd( const TensorLayout& data, const IndexDescLayoutOnly& index, TensorLayout& dst); static ExecInfo check_exec_noworkspace( const TensorLayout& data, const TensorLayout& value, const IndexDesc& index, IndexDescLayoutOnly& index_layout); }; /*! * \brief compute indexing result, like numpy advanced indexing * * src can have arbitrary layout, but dst must be dim1-contig */ class IndexingMultiAxisVec : public IndexingMultiAxisVecBase { DEF_OPR_IMPL(IndexingMultiAxisVec, IndexingMultiAxisVecBase, 0, 1); public: virtual void exec( _megdnn_tensor_in src, const IndexDesc& index, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; /*! * \brief get workspace size based on output shape and indexing axes */ size_t get_workspace_in_bytes( const TensorShape& dst, const size_t* axes, size_t nr_axes, size_t idx_ndim); static void deduce_layout( const TensorLayout& data, const IndexDescLayoutOnly& index, TensorLayout& dst) { deduce_layout_fwd(data, index, dst); } protected: virtual size_t get_workspace_in_bytes(size_t dst_idx_size) = 0; ExecInfo check_exec( const TensorLayout& src, const IndexDesc& index, const TensorLayout& dst, size_t workspace_in_bytes); }; /*! * \brief base class for modifying data by given index * * data can have arbitrary layout, but value must be dim1-contig */ class IndexingModifyMultiAxisVecBase : public IndexingMultiAxisVecBase { DEF_OPR_IMPL_CTOR(IndexingModifyMultiAxisVecBase, IndexingMultiAxisVecBase); public: virtual void exec( _megdnn_tensor_inout data, _megdnn_tensor_in value, const IndexDesc& index, _megdnn_workspace workspace) = 0; /*! * \brief get workspace size based on shape of value input and indexing * axes */ size_t get_workspace_in_bytes( const TensorShape& value, const size_t* axes, size_t nr_axes, size_t idx_ndim); protected: ExecInfo check_exec( const TensorLayout& data, const TensorLayout& value, const IndexDesc& index, size_t workspace_in_bytes); virtual size_t get_workspace_in_bytes(size_t value_idx_size) = 0; }; //! set value to indexed locations; index values must be non-overlapping class IndexingSetMultiAxisVec : public IndexingModifyMultiAxisVecBase { DEF_OPR_IMPL(IndexingSetMultiAxisVec, IndexingModifyMultiAxisVecBase, 0, 0); }; //! add value to indexed locations; index values must be non-overlapping class IndexingIncrMultiAxisVec : public IndexingModifyMultiAxisVecBase { DEF_OPR_IMPL(IndexingIncrMultiAxisVec, IndexingModifyMultiAxisVecBase, 0, 0); }; class MeshBase : public OperatorBase { DEF_OPR_PARAM(Empty); DEF_OPR_IMPL_CTOR(MeshBase, OperatorBase); public: using AxisIndexer = IndexingMultiAxisVecBase::AxisIndexer; using IndexDesc = IndexingMultiAxisVecBase::IndexDesc; using AxisIndexerLayoutOnly = IndexingMultiAxisVecBase::AxisIndexerLayoutOnly; using IndexDescLayoutOnly = IndexingMultiAxisVecBase::IndexDescLayoutOnly; size_t get_workspace_in_bytes(const TensorShape&, const size_t*, size_t, size_t) { return 0; } protected: virtual void check_exec( const TensorLayout& origin, const TensorLayout& indexed, const IndexDesc& desc); }; class NormalMeshBase : public MeshBase { DEF_OPR_IMPL(NormalMeshBase, MeshBase, 0, 0); protected: virtual void check_exec( const TensorLayout& origin, const TensorLayout& indexed, const IndexDesc& desc) override final; }; class NormalMeshModifyBase : public NormalMeshBase { DEF_OPR_IMPL_CTOR(NormalMeshModifyBase, NormalMeshBase); public: virtual void exec( _megdnn_tensor_inout data, _megdnn_tensor_in value, const IndexDesc& desc, _megdnn_workspace workspace) = 0; }; class BatchedMeshBase : public MeshBase { DEF_OPR_IMPL_CTOR(BatchedMeshBase, MeshBase); protected: virtual void check_exec( const TensorLayout& origin, const TensorLayout& indexed, const IndexDesc& desc) override final; }; class BatchedMeshModifyBase : public BatchedMeshBase { DEF_OPR_IMPL_CTOR(BatchedMeshModifyBase, BatchedMeshBase); public: virtual void exec( _megdnn_tensor_inout data, _megdnn_tensor_in value, const IndexDesc& desc, _megdnn_workspace workspace) = 0; }; class MeshIndexing : public NormalMeshBase { DEF_OPR_IMPL(MeshIndexing, NormalMeshBase, 0, 0); public: virtual void exec( _megdnn_tensor_in src, const IndexDesc& desc, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; static void deduce_layout( const TensorLayout& inp, const IndexDescLayoutOnly& layouts, TensorLayout& out_layout); }; class IncrMeshIndexing : public NormalMeshModifyBase { DEF_OPR_IMPL(IncrMeshIndexing, NormalMeshModifyBase, 0, 0); }; class SetMeshIndexing : public NormalMeshModifyBase { DEF_OPR_IMPL(SetMeshIndexing, NormalMeshModifyBase, 0, 0); }; class BatchedMeshIndexing : public BatchedMeshBase { DEF_OPR_IMPL(BatchedMeshIndexing, BatchedMeshBase, 0, 0); public: virtual void exec( _megdnn_tensor_in src, const IndexDesc& desc, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; static void deduce_layout( const TensorLayout& inp, const IndexDescLayoutOnly& layouts, TensorLayout& out_layout); }; class BatchedIncrMeshIndexing : public BatchedMeshModifyBase { DEF_OPR_IMPL(BatchedIncrMeshIndexing, BatchedMeshModifyBase, 0, 0); }; class BatchedSetMeshIndexing : public BatchedMeshModifyBase { DEF_OPR_IMPL(BatchedSetMeshIndexing, BatchedMeshModifyBase, 0, 0); }; class RelayoutFormat : public OperatorBase { DEF_OPR_PARAM(RelayoutFormat); DEF_OPR_IMPL(RelayoutFormat, OperatorBase, 1, 1); public: virtual void exec( _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); void deduce_format(TensorFormat src, TensorFormat& dst); virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst); void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst); void check_exec( const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes); void deduce_exec_layout( const TensorLayout& src, const TensorLayout& dst, TensorLayout& exec_workspace, TensorLayout& exec_src, TensorLayout& exec_dst); }; /*! * \brief check whether input contains inf or nan value. */ class CheckNonFinite : public OperatorBase { DEF_OPR_PARAM(CheckNonFinite); DEF_OPR_IMPL(CheckNonFinite, OperatorBase, -1, 1); size_t m_size = 0; public: virtual size_t get_workspace_in_bytes( const TensorNDArray& srcs, const TensorLayout& dst) = 0; void deduce_layout(const TensorLayoutArray& srcs, TensorLayout& dst); virtual void exec( _megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; protected: void check_exec( const TensorNDArray& srcs, const TensorND& dst, size_t workspace_in_bytes); }; /*! * \brief fill the tensor with a scalar value */ class Fill : public OperatorBase { DEF_OPR_PARAM(Fill); DEF_OPR_IMPL(Fill, OperatorBase, 0, 1); public: virtual void exec(_megdnn_tensor_out dst, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes(const TensorLayout& dst) = 0; protected: void check_exec(const TensorLayout& dst, size_t workspace_in_bytes); }; /*! * \brief standard padding operator * Inputs must have the same dtype, and the output tensor shape must greater or equal * than input tensor in every dimensions, the extra space will be fulled with m which * default to be 0. */ class PaddingBase : public OperatorBase { DEF_OPR_PARAM(Padding); DEF_OPR_IMPL(PaddingBase, OperatorBase, 1, 1); public: using Mode = Param::PaddingMode; protected: SmallVector get_offsets(); void check_exec(const TensorLayout& src, const TensorLayout& dst); }; class PaddingForward : public PaddingBase { DEF_OPR_IMPL(PaddingForward, PaddingBase, 1, 1); public: virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) = 0; void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace) { return exec(src, dst); } virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; void deduce_layout(const TensorLayout& src, TensorLayout& dst); protected: void forward_check_exec(const TensorLayout& src, const TensorLayout& dst); }; using Padding = PaddingForward; class PaddingBackward : public PaddingBase { DEF_OPR_IMPL(PaddingBackward, PaddingBase, 1, 1); public: virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) = 0; void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace) { return exec(src, dst); } virtual size_t get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& dst) = 0; protected: void backward_check_exec(const TensorLayout& src, const TensorLayout& dst); }; class LAMBUpdate : public OperatorBase { DEF_OPR_PARAM(LAMBUpdate); // input=(m_t-1,v_t-1,lamb_param,grad) , output = (m_t,v_t,new_param) DEF_OPR_IMPL(LAMBUpdate, OperatorBase, 4, 3); public: virtual void exec( _megdnn_tensor_in m_t_1, _megdnn_tensor_in v_t_1, _megdnn_tensor_in lamb_param, _megdnn_tensor_in grad, _megdnn_tensor_out m_t, _megdnn_tensor_out v_t, _megdnn_tensor_out new_param, _megdnn_workspace workspace) = 0; virtual size_t get_workspace_in_bytes( const TensorLayout& m_t_1, const TensorLayout& v_t_1, const TensorLayout& lamb_param, const TensorLayout& grad, const TensorLayout& m_t, const TensorLayout& v_t, const TensorLayout& new_param) = 0; void deduce_layout( const TensorLayout& m_t_1, const TensorLayout& v_t_1, const TensorLayout& lamb_param, const TensorLayout& grad, TensorLayout& m_t, TensorLayout& v_t, TensorLayout& new_param); protected: void check_exec( const TensorLayout& m_t_1, const TensorLayout& v_t_1, const TensorLayout& lamb_param, const TensorLayout& grad, const TensorLayout& m_t, const TensorLayout& v_t, const TensorLayout& new_param, size_t workspace_in_bytes); }; using LAMB = LAMBUpdate; } // namespace megdnn #include "megdnn/internal/opr_header_epilogue.h" // vim: syntax=cpp.doxygen