# -*- coding: utf-8 -*- import multiprocessing as mp import platform import queue import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.core.ops.builtin import CollectiveComm, ParamPackConcat, ParamPackSplit from megengine.device import get_default_device from megengine.distributed.helper import param_pack_concat, param_pack_split def _assert_q_empty(q): try: res = q.get(timeout=1) except Exception as e: assert isinstance(e, queue.Empty) else: assert False, "queue is not empty" def _assert_q_val(q, val): ret = q.get() assert ret == val @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("backend", ["nccl"]) @pytest.mark.isolated_distributed def test_init_process_group(backend): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank): dist.init_process_group("localhost", port, world_size, rank, rank, backend) assert dist.is_distributed() == True assert dist.get_rank() == rank assert dist.get_world_size() == world_size assert dist.get_backend() == backend py_server_addr = dist.get_py_server_addr() assert py_server_addr[0] == "localhost" assert py_server_addr[1] == port mm_server_addr = dist.get_mm_server_addr() assert mm_server_addr[0] == "localhost" assert mm_server_addr[1] > 0 assert isinstance(dist.get_client(), dist.server._Client) procs = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank,)) p.start() procs.append(p) for p in procs: p.join(20) assert p.exitcode == 0 @pytest.mark.require_ngpu(3) @pytest.mark.isolated_distributed def test_new_group(): world_size = 3 ranks = [2, 0] @dist.launcher def worker(): rank = dist.get_rank() if rank in ranks: group = dist.new_group(ranks) assert group.size == 2 assert group.key == "2,0" assert group.rank == ranks.index(rank) dt = get_default_device()[:-1] assert group.comp_node == "{}{}:2".format(dt, rank) worker() @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_group_barrier(): world_size = 2 server = dist.Server() port = server.py_server_port def worker(rank, q): dist.init_process_group("localhost", port, world_size, rank, rank) dist.group_barrier() if rank == 0: dist.group_barrier() q.put(0) # to be observed in rank 1 else: _assert_q_empty(q) # q.put(0) is not executed in rank 0 dist.group_barrier() _assert_q_val(q, 0) # q.put(0) executed in rank 0 Q = mp.Queue() procs = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank, Q)) p.start() procs.append(p) for p in procs: p.join(20) assert p.exitcode == 0 @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_synchronized(): world_size = 2 server = dist.Server() port = server.py_server_port @dist.synchronized def func(rank, q): q.put(rank) def worker(rank, q): dist.init_process_group("localhost", port, world_size, rank, rank) dist.group_barrier() if rank == 0: func(0, q) # q.put(0) q.put(2) else: _assert_q_val(q, 0) # func executed in rank 0 _assert_q_empty(q) # q.put(2) is not executed func(1, q) _assert_q_val( q, 1 ) # func in rank 1 executed earlier than q.put(2) in rank 0 _assert_q_val(q, 2) # q.put(2) executed in rank 0 Q = mp.Queue() procs = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank, Q)) p.start() procs.append(p) for p in procs: p.join(20) assert p.exitcode == 0 @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_user_set_get(): @dist.launcher def worker(): # set in race condition dist.get_client().user_set("foo", 1) # get in race condition ret = dist.get_client().user_get("foo") assert ret == 1 worker() def test_oprmm_hashable(): lhs = (CollectiveComm(), ParamPackConcat(), ParamPackSplit()) rhs = (CollectiveComm(), ParamPackConcat(), ParamPackSplit()) assert lhs == rhs assert hash(lhs) == hash(rhs) def test_param_pack_split(): a = mge.Tensor(np.ones((10,), np.int32)) b, c = param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)]) assert np.allclose(b.numpy(), a.numpy()[1]) assert np.allclose(c.numpy(), a.numpy()[1:].reshape(3, 3)) def test_param_pack_concat(): a = mge.Tensor(np.ones((1,), np.int32)) b = mge.Tensor(np.ones((3, 3), np.int32)) offsets_val = [0, 1, 1, 10] offsets = mge.Tensor(offsets_val, np.int32) c = param_pack_concat([a, b], offsets, offsets_val) assert np.allclose(np.concatenate([a.numpy(), b.numpy().flatten()]), c.numpy()) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("early_return", [False, True], ids=["common", "early_return"]) @pytest.mark.parametrize("output_size", [10, 10000], ids=["small_size", "large_size"]) @pytest.mark.isolated_distributed def test_collect_results(early_return, output_size): @dist.launcher def worker(): if early_return: exit(0) return [dist.get_rank()] * output_size results = worker() world_size = len(results) assert world_size > 0 expects = ( [None] * world_size if early_return else [[dev] * output_size for dev in range(world_size)] ) assert results == expects @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_user_set_pop(): @dist.launcher def worker(): # set in race condition dist.get_client().user_set("foo", 1) if dist.get_rank() == 1: ret = dist.get_client().user_pop("foo") assert ret == 1 worker() @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_get_cuda_compute_capability(): assert mge.device.get_cuda_compute_capability(0) > 0 assert mge.device.get_cuda_compute_capability(1) > 0 @dist.launcher def worker(): x = mge.tensor([1.0]) assert mge.device.get_cuda_compute_capability(dist.get_rank()) > 0 worker() @pytest.mark.require_ngpu(3) @pytest.mark.isolated_distributed def test_batch_send_recv(): import megengine.distributed.functional as DF @dist.launcher(n_gpus=3) def worker(): rank = dist.get_rank() dist.group_start() for i in range(3): tensor = mge.tensor(np.ones(10000)) * rank if i == 2: tensor *= i DF._remote_send_nobackward(tensor, (rank + 1) % 3) DF._remote_recv_nobackward( src_rank=(rank + 1) % 3, dtype="float32", shape=(10000,) ) DF._remote_send_nobackward(tensor, (rank - 1) % 3) recv = DF._remote_recv_nobackward( src_rank=(rank - 1) % 3, dtype="float32", shape=(10000,) ) if i == 2: recv2 = recv dist.group_end() np.testing.assert_equal(recv2.numpy(), (rank - 1) % 3 * 2 * np.ones(10000)) worker()