/*************************************************************************************************** * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without *modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, *this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright *notice, this list of conditions and the following disclaimer in the *documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its *contributors may be used to endorse or promote products derived from this *software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE *DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT, *INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, *DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY *OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING *NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, *EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /** * \file dnn/src/cuda/cutlass/library.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once ///////////////////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wreorder" #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Wunused-parameter" #include "cutlass/cutlass.h" #include "cutlass/layout/tensor.h" #include "cutlass/matrix_coord.h" #include "cutlass/tensor_coord.h" #include "cutlass/conv/conv2d_problem_size.h" #include "cutlass/conv/convolution.h" #include "cutlass/epilogue/epilogue.h" #include "cutlass/gemm/gemm.h" #pragma GCC diagnostic pop ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Layout type identifier enum class LayoutTypeID { kUnknown, kColumnMajor, kRowMajor, kColumnMajorInterleavedK2, kRowMajorInterleavedK2, kColumnMajorInterleavedK4, kRowMajorInterleavedK4, kColumnMajorInterleavedK16, kRowMajorInterleavedK16, kColumnMajorInterleavedK32, kRowMajorInterleavedK32, kColumnMajorInterleavedK64, kRowMajorInterleavedK64, kTensorNCHW, kTensorNCDHW, kTensorNHWC, kTensorNDHWC, kTensorNC4HW4, kTensorC4RSK4, kTensorNC8HW8, kTensorC8RSK8, kTensorNC16HW16, kTensorC16RSK16, kTensorNC32HW32, kTensorC32RSK32, kTensorNC64HW64, kTensorC64RSK64, kTensorK4RSC4, kTensorCK4RS4, kTensorCK8RS8, kTensorCK16RS16, kInvalid }; /// Numeric data type enum class NumericTypeID { kUnknown, kVoid, kB1, kU2, kU4, kU8, kU16, kU32, kU64, kS2, kS4, kS8, kS16, kS32, kS64, kF16, kBF16, kTF32, kF32, kF64, kCF16, kCBF16, kCF32, kCTF32, kCF64, kCS2, kCS4, kCS8, kCS16, kCS32, kCS64, kCU2, kCU4, kCU8, kCU16, kCU32, kCU64, kInvalid }; /// Enumerated type describing a transformation on a complex value. enum class ComplexTransform { kNone, kConjugate, kInvalid }; /// Providers enum class Provider { kNone, kCUTLASS, kReferenceHost, kReferenceDevice, kCUBLAS, kCUDNN, kInvalid }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Enumeration indicating the kind of operation enum class OperationKind { kGemm, kConv2d, kConv3d, kConvolution, kEqGemm, kSparseGemm, kReduction, kInvalid }; /// Enumeration indicating whether scalars are in host or device memory enum class ScalarPointerMode { kHost, kDevice, kInvalid }; /// Describes how reductions are performed across threadblocks enum class SplitKMode { kNone, kSerial, kParallel, kParallelSerial, kInvalid }; /// Indicates the classificaition of the math instruction enum class OpcodeClassID { kSimt, kTensorOp, kWmmaTensorOp, kSparseTensorOp, kInvalid }; enum class ArchTagID { kSm50, kSm60, kSm61, kSm70, kSm72, kSm75, kSm80, kSm86, kInvalid }; enum class MathOperationID { kAdd, kMultiplyAdd, kMultiplyAddSaturate, kMultiplyAddFastBF16, kMultiplyAddFastF16, kMultiplyAddComplex, kMultiplyAddGaussianComplex, kXorPopc, kInvalid }; enum class ThreadblockSwizzleID { kGemmIdentity, kGemmHorizontal, kGemmBatchedIdentity, kGemmSplitKIdentity, kGemmSplitKHorizontal, kGemvBatchedStridedDefault, kGemvBatchedStridedReduction, kConvolutionFpropCxRSKx, kConvolutionDgradCxRSKx, kConvolutionFpropNCxHWx, kConvolutionFpropTrans, kConvolutionDgradNCxHWx, kConvolutionDgradTrans, kDepthwiseConvolutionFprop, kDepthwiseConvolutionDgrad, kDepthwiseConvolutionWgrad, kInvalid }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Enumeration indicating what kind of GEMM operation to perform enum class GemmKind { kGemm, kSparse, kUniversal, kPlanarComplex, kPlanarComplexArray, kInvalid }; /// Mode of Universal GEMM using GemmUniversalMode = cutlass::gemm::GemmUniversalMode; /// Enumeration indicating what kind of Conv2d operation to perform enum class ConvKind { kUnknown, kFprop, kDgrad, kWgrad, kInvalid }; enum class ConvModeID { kCrossCorrelation, kConvolution, kInvalid }; // Iterator algorithm enum in order of general performance-efficiency enum class IteratorAlgorithmID { kNone, kAnalytic, kOptimized, kInvalid }; enum class EpilogueKind { kUnknown, kBiasAddLinearCombination, kBiasAddLinearCombinationClamp, kBiasAddLInearCombinationHSwish, kBiasAddLInearCombinationHSwishClamp, kBiasAddLInearCombinationRelu, kBiasAddLInearCombinationReluClamp, kConversion, kLinearCombination, kLinearCombinationClamp, kLinearCombinationPlanarComplex, kLinearCombinationRelu, kLinearCombinationSigmoid, kInvalid }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct MathInstructionDescription { /// Shape of the target math instruction cutlass::gemm::GemmCoord instruction_shape; /// Describes the data type of the internal accumulator NumericTypeID element_accumulator; /// Classification of math instruction OpcodeClassID opcode_class; /// Type of math operation performed MathOperationID math_operation; // // Methods // MathInstructionDescription( cutlass::gemm::GemmCoord instruction_shape = cutlass::gemm::GemmCoord(), NumericTypeID element_accumulator = NumericTypeID::kInvalid, OpcodeClassID opcode_class = OpcodeClassID::kInvalid, MathOperationID math_operation = MathOperationID::kMultiplyAdd) : instruction_shape(instruction_shape), element_accumulator(element_accumulator), opcode_class(opcode_class), math_operation(math_operation) {} // Equality operator inline bool operator==(MathInstructionDescription const& rhs) const { return ((instruction_shape == rhs.instruction_shape) && (element_accumulator == rhs.element_accumulator) && (opcode_class == rhs.opcode_class) && (math_operation == rhs.math_operation)); } // Inequality operator inline bool operator!=(MathInstructionDescription const& rhs) const { return !(*this == rhs); } }; /// Structure describing the tiled structure of a GEMM-like computation struct TileDescription { /// Describes the shape of a threadblock (in elements) cutlass::gemm::GemmCoord threadblock_shape; /// Describes the number of pipeline stages in the threadblock-scoped /// mainloop int threadblock_stages; /// Number of warps in each logical dimension cutlass::gemm::GemmCoord warp_count; /// Core math instruction MathInstructionDescription math_instruction; /// Minimum compute capability (e.g. 70, 75) of a device eligible to run the /// operation. int minimum_compute_capability; /// Minimum compute capability (e.g. 70, 75) of a device eligible to run the /// operation. int maximum_compute_capability; // // Methods // TileDescription( cutlass::gemm::GemmCoord threadblock_shape = cutlass::gemm::GemmCoord(), int threadblock_stages = 0, cutlass::gemm::GemmCoord warp_count = cutlass::gemm::GemmCoord(), MathInstructionDescription math_instruction = MathInstructionDescription(), int minimum_compute_capability = 0, int maximum_compute_capability = 0) : threadblock_shape(threadblock_shape), threadblock_stages(threadblock_stages), warp_count(warp_count), math_instruction(math_instruction), minimum_compute_capability(minimum_compute_capability), maximum_compute_capability(maximum_compute_capability) {} // Equality operator inline bool operator==(TileDescription const& rhs) const { return ((threadblock_shape == rhs.threadblock_shape) && (threadblock_stages == rhs.threadblock_stages) && (warp_count == rhs.warp_count) && (math_instruction == rhs.math_instruction) && (minimum_compute_capability == rhs.minimum_compute_capability) && (maximum_compute_capability == rhs.maximum_compute_capability)); } // Inequality operator inline bool operator!=(TileDescription const& rhs) const { return !(*this == rhs); } }; /// High-level description of an operation struct OperationDescription { /// Unique identifier describing the operation char const* name; /// Operation provider Provider provider; /// Kind of operation OperationKind kind; /// Describes the tiled structure of a GEMM-like computation TileDescription tile_description; // // Methods // OperationDescription( char const* name = "unknown", OperationKind kind = OperationKind::kInvalid, TileDescription const& tile_description = TileDescription()) : name(name), kind(kind), tile_description(tile_description) {} }; /// Structure describing the properties of a tensor struct TensorDescription { /// Numeric type of an individual element NumericTypeID element; /// Enumerant identifying the layout function for the tensor LayoutTypeID layout; /// Alignment restriction on pointers, strides, and extents int alignment; /// log2() of the maximum extent of each dimension int log_extent_range; /// log2() of the maximum value each relevant stride may have int log_stride_range; // // Methods // TensorDescription( NumericTypeID element = NumericTypeID::kInvalid, LayoutTypeID layout = LayoutTypeID::kInvalid, int alignment = 1, int log_extent_range = 24, int log_stride_range = 24) : element(element), layout(layout), alignment(alignment), log_extent_range(log_extent_range), log_stride_range(log_stride_range) {} }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct GemmDescription : public OperationDescription { GemmKind gemm_kind; TensorDescription A; TensorDescription B; TensorDescription C; int stages; SplitKMode split_k_mode; }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct GemmArguments { /// GEMM problem size gemm::GemmCoord problem_size; /// Device pointers to input and output matrices void const* A; void const* B; void const* C; void* D; /// Leading dimensions of input and output matrices int64_t lda; int64_t ldb; int64_t ldc; int64_t ldd; /// Number of partitions of K dimension int split_k_slices; /// Host or device pointers to epilogue scalars, note that these pointers /// will be interpreted as ElementCompute* in method `op->run(args)`, a /// different dtype here results in undefined epilogue behaviors void const* alpha; void const* beta; }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct ConvolutionDescription : public OperationDescription { conv::Operator conv_op; TensorDescription src; TensorDescription filter; TensorDescription dst; TensorDescription bias; conv::ConvType convolution_type; ArchTagID arch_tag; epilogue::EpilogueType epilogue_type; int epilogue_count; ThreadblockSwizzleID threadblock_swizzle; conv::SpecialOptimizeDesc special_optimization; conv::ImplicitGemmMode gemm_mode; bool without_shared_load; }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct ConvolutionArguments { /// Problem size conv::Conv2dProblemSize problem_size; /// Device pointers to input and output tensors void const* src; void const* filter; void const* bias; void const* z; void* dst; /// Host or device pointers to epilogue scalars, note that these pointers /// will be interpreted as ElementCompute* in method `op->run(args)`, a /// different dtype here results in undefined epilogue behaviors void const* alpha; void const* beta; void const* gamma; void const* delta; void const* theta; void const* threshold; void const* scale; /// Host pointer to extra param struct void const* extra_param; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Base class for all operations class Operation { public: virtual ~Operation() {} virtual OperationDescription const& description() const = 0; virtual Status run( void const* arguments, void* device_workspace = nullptr, cudaStream_t stream = nullptr) const = 0; }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////