/** * \file imperative/src/impl/ops/specialzations.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ // FIXME: split this file into separate files for each specialized op #include "megbrain/imperative/ops/autogen.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/dnn/adaptive_pooling.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/dnn/correlation.h" #include "megbrain/opr/dnn/fake_quant.h" #include "megbrain/opr/dnn/images2neibs.h" #include "megbrain/opr/dnn/layer_norm.h" #include "megbrain/opr/dnn/local.h" #include "megbrain/opr/dnn/lrn.h" #include "megbrain/opr/dnn/lsq.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/dnn/roi_align.h" #include "megbrain/opr/dnn/roi_pooling.h" #include "megbrain/opr/dnn/sliding_window_transpose.h" #include "megbrain/opr/dnn/tqt.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/indexing.h" #include "megbrain/opr/io.h" #include "megbrain/opr/misc.h" #include "megbrain/opr/nn_int.h" #include "megbrain/opr/rand.h" #include "megbrain/opr/tensor_gen.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" #include "../op_trait.h" namespace mgb::imperative { namespace { namespace dimshuffle { std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { auto* node = &node_->cast_final_safe(); std::vector pattern(node->param().pattern_len); for (size_t i = 0; i < node->param().pattern_len; ++i) { pattern[i] = node->param().pattern[i]; } return Dimshuffle::make(pattern); } auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& ds = static_cast(def); OperatorNodeConfig config{ds.make_name()}; return opr::Dimshuffle::make(inputs[0], ds.pattern, 0UL, config); } OP_TRAIT_REG(Dimshuffle, Dimshuffle, opr::Dimshuffle) .make_from_op_node(make_from_op_node) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace dimshuffle } // namespace namespace { namespace add_axis { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& add_axis = static_cast(def); using Desc = opr::AxisAddRemove::AxisDesc; std::vector param; for (auto&& i : add_axis.axis) { param.push_back(Desc::make_add(i)); } OperatorNodeConfig config{add_axis.make_name()}; return opr::AxisAddRemove::make(inputs[0], param, config); } OP_TRAIT_REG(AddAxis, AddAxis).apply_on_var_node(apply_on_var_node).fallback(); } // namespace add_axis } // namespace namespace { namespace remove_axis { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& remove_axis = static_cast(def); using Desc = opr::AxisAddRemove::AxisDesc; std::vector param; for (auto&& i : remove_axis.axis) { param.push_back(Desc::make_remove(i)); } OperatorNodeConfig config{remove_axis.make_name()}; return opr::AxisAddRemove::make(inputs[0], param, config); } OP_TRAIT_REG(RemoveAxis, RemoveAxis).apply_on_var_node(apply_on_var_node).fallback(); } // namespace remove_axis } // namespace namespace { namespace top_k { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& topk = static_cast(def); OperatorNodeConfig config{topk.make_name()}; return opr::TopK::make(inputs[0], inputs[1], topk.param(), config)[0] .node() ->owner_opr(); } OP_TRAIT_REG(TopK, TopK).apply_on_var_node(apply_on_var_node).fallback(); } // namespace top_k } // namespace namespace { namespace adaptive_pooling { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& pool = static_cast(def); OperatorNodeConfig config{pool.make_name()}; return opr::AdaptivePooling::make(inputs[0], inputs[1], pool.param(), config); } OP_TRAIT_REG(AdaptivePooling, AdaptivePooling) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace adaptive_pooling } // namespace namespace { namespace conv_bias { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); cg::OperatorNodeConfig config{conv.dtype}; config.name(conv.make_name()); if (inputs.size() == 2) { return opr::ConvBias::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } else if (inputs.size() == 3) { return opr::ConvBias::make( inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config); } else if (inputs.size() == 4) { return opr::ConvBias::make( inputs[0], inputs[1], inputs[2], inputs[3], conv.param(), conv.policy(), config); } mgb_assert(0); } OP_TRAIT_REG(ConvBias, ConvBias).apply_on_var_node(apply_on_var_node).fallback(); } // namespace conv_bias } // namespace namespace { namespace batch_conv_bias { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); cg::OperatorNodeConfig config{conv.dtype}; config.name(conv.make_name()); if (inputs.size() == 2) { return opr::BatchConvBias::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } else if (inputs.size() == 3) { return opr::BatchConvBias::make( inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config); } else if (inputs.size() == 4) { return opr::BatchConvBias::make( inputs[0], inputs[1], inputs[2], inputs[3], conv.param(), conv.policy(), config); } mgb_assert(0); } OP_TRAIT_REG(BatchConvBias, BatchConvBias) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace batch_conv_bias } // namespace namespace { namespace pooling { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& pool = static_cast(def); OperatorNodeConfig config{pool.make_name()}; return opr::Pooling::make(inputs[0], pool.param(), pool.policy(), config); } OP_TRAIT_REG(Pooling, Pooling).apply_on_var_node(apply_on_var_node).fallback(); } // namespace pooling } // namespace namespace { namespace matrix_mul { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& matmul = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{matmul.make_name()}; return opr::MatrixMul::make( inputs[0], inputs[1], matmul.param(), matmul.policy(), config); } OP_TRAIT_REG(MatrixMul, MatrixMul).apply_on_var_node(apply_on_var_node).fallback(); } // namespace matrix_mul } // namespace namespace { namespace batched_matrix_mul { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& matmul = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{matmul.make_name()}; return opr::BatchedMatrixMul::make( inputs[0], inputs[1], matmul.param(), matmul.policy(), config); } OP_TRAIT_REG(BatchedMatrixMul, BatchedMatrixMul) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace batched_matrix_mul } // namespace namespace { namespace dot { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = def.cast_final_safe(); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; return opr::Dot::make(inputs[0], inputs[1], config); } OP_TRAIT_REG(Dot, Dot).apply_on_var_node(apply_on_var_node).fallback(); } // namespace dot } // namespace namespace { namespace argsort { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& argsort = static_cast(def); OperatorNodeConfig config{argsort.make_name()}; return opr::Argsort::make(inputs[0], argsort.param(), config); } OP_TRAIT_REG(Argsort, Argsort).apply_on_var_node(apply_on_var_node).fallback(); } // namespace argsort } // namespace namespace { namespace argmax { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& argmax = static_cast(def); OperatorNodeConfig config{argmax.make_name()}; return opr::Argmax::make(inputs[0], argmax.param(), config); } OP_TRAIT_REG(Argmax, Argmax).apply_on_var_node(apply_on_var_node).fallback(); } // namespace argmax } // namespace namespace { namespace argmin { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& argmin = static_cast(def); OperatorNodeConfig config{argmin.make_name()}; return opr::Argmin::make(inputs[0], argmin.param(), config); } OP_TRAIT_REG(Argmin, Argmin).apply_on_var_node(apply_on_var_node).fallback(); } // namespace argmin } // namespace namespace { namespace warp_perspective { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& warp = static_cast(def); OperatorNodeConfig config{warp.make_name()}; if (inputs.size() == 3) { return opr::WarpPerspective::make( inputs[0], inputs[1], inputs[2], warp.param(), config); } else { mgb_assert(inputs.size() == 4); return opr::WarpPerspective::make( inputs[0], inputs[1], inputs[2], inputs[3], warp.param(), config); } } OP_TRAIT_REG(WarpPerspective, WarpPerspective) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace warp_perspective } // namespace namespace { namespace group_local { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& local = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{local.make_name()}; return opr::GroupLocal::make(inputs[0], inputs[1], local.param(), config); } OP_TRAIT_REG(GroupLocal, GroupLocal).apply_on_var_node(apply_on_var_node).fallback(); } // namespace group_local } // namespace namespace { namespace indexing_set_one_hot { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 3); OperatorNodeConfig config{op.make_name()}; return opr::IndexingSetOneHot::make( inputs[0], inputs[1], inputs[2], op.param(), config); } OP_TRAIT_REG(IndexingSetOneHot, IndexingSetOneHot) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace indexing_set_one_hot } // namespace namespace { namespace typecvt { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); OperatorNodeConfig config{op.make_name()}; return opr::TypeCvt::make(inputs[0], op.dtype, config); } OP_TRAIT_REG(TypeCvt, TypeCvt).apply_on_var_node(apply_on_var_node).fallback(); } // namespace typecvt } // namespace namespace { namespace concat { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); cg::OperatorNodeConfig config{op.comp_node}; config.name(op.make_name()); return opr::Concat::make(inputs, op.axis, config); } OP_TRAIT_REG(Concat, Concat).apply_on_var_node(apply_on_var_node).fallback(); } // namespace concat } // namespace namespace { namespace copy { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); cg::OperatorNodeConfig config{op.comp_node}; config.name(op.make_name()); return opr::Copy::make(inputs[0], config); } OP_TRAIT_REG(Copy, Copy).apply_on_var_node(apply_on_var_node).fallback(); } // namespace copy } // namespace namespace { namespace assert_equal { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = def.cast_final(); if (inputs.size() == 2) { return opr::AssertEqual::make(inputs[0], inputs[1], op.param()); } else { // workaround for MiniGraph, which only allow one opr in the graph mgb_assert(inputs.size() == 3); return opr::AssertEqual::make(inputs[0], inputs[1], inputs[2], op.param(), {}); } } OP_TRAIT_REG(AssertEqual, AssertEqual).apply_on_var_node(apply_on_var_node).fallback(); } // namespace assert_equal } // namespace namespace { namespace roi_align { VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; auto* opr = opr::ROIAlign::make(inputs[0], inputs[1], op.param(), config) .node() ->owner_opr(); return {opr->output(0), opr->output(1)}; } OP_TRAIT_REG(ROIAlign, ROIAlign).apply_on_var_node(apply_on_var_node).fallback(); } // namespace roi_align } // namespace namespace { namespace correlation { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; return opr::Correlation::make(inputs[0], inputs[1], op.param(), config); } OP_TRAIT_REG(Correlation, Correlation).apply_on_var_node(apply_on_var_node).fallback(); } // namespace correlation } // namespace #if MGB_CUDA namespace { namespace nvof { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); OperatorNodeConfig config{op.make_name()}; return opr::NvOf::make(inputs[0], op.param(), config); } OP_TRAIT_REG(NvOf, NvOf).apply_on_var_node(apply_on_var_node).fallback(); } // namespace nvof } // namespace #endif namespace { namespace linspace { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 3); cg::OperatorNodeConfig config{op.comp_node}; config.name(op.make_name()); return opr::Linspace::make(inputs[0], inputs[1], inputs[2], op.param(), config); } OP_TRAIT_REG(Linspace, Linspace).apply_on_var_node(apply_on_var_node).fallback(); } // namespace linspace } // namespace namespace { namespace eye { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); cg::OperatorNodeConfig config{op.comp_node}; config.name(op.make_name()); opr::Eye::Param param{op.k, op.dtype.enumv()}; return opr::Eye::make(inputs[0], param, config); } OP_TRAIT_REG(Eye, Eye).apply_on_var_node(apply_on_var_node).fallback(); } // namespace eye } // namespace namespace { namespace diag { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); cg::OperatorNodeConfig config{op.make_name()}; opr::Diag::Param param{op.k}; return opr::Diag::make(inputs[0], param, config); } OP_TRAIT_REG(Diag, Diag).apply_on_var_node(apply_on_var_node).fallback(); } // namespace diag } // namespace namespace { namespace roi_pooling { VarNodeArray apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 3); OperatorNodeConfig config{op.make_name()}; auto* opr = opr::ROIPooling::make(inputs[0], inputs[1], inputs[2], op.param(), config) .node() ->owner_opr(); return {opr->output(0), opr->output(1)}; } OP_TRAIT_REG(ROIPooling, ROIPooling).apply_on_var_node(apply_on_var_node).fallback(); } // namespace roi_pooling } // namespace namespace { namespace remap { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; return opr::Remap::make(inputs[0], inputs[1], op.param(), config); } OP_TRAIT_REG(Remap, Remap).apply_on_var_node(apply_on_var_node).fallback(); } // namespace remap } // namespace namespace { auto get_index( const VarNodeArray& inputs, size_t vidx, const std::vector>& mask) { size_t length = mask.size(); opr::Subtensor::IndexDesc ret(length); for (size_t i = 0; i < length; ++i) { auto&& [axis, begin, end, step, idx] = mask[i]; ret[i].axis = axis; if (idx) { ret[i].idx = inputs[vidx++]; } else { mgb_assert(begin || end || step); if (begin) ret[i].begin = inputs[vidx++]; if (end) ret[i].end = inputs[vidx++]; if (step) ret[i].step = inputs[vidx++]; } } mgb_assert(vidx == inputs.size()); return ret; } #define IN1 inputs[0] #define IN2 inputs[0], inputs[1] #define FANCY_INDEXING_IMPL(NAME, NR_INPUT) \ namespace NAME##_impl { \ auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { \ auto&& op = static_cast(def); \ OperatorNodeConfig config{op.make_name()}; \ return opr::NAME::make( \ IN##NR_INPUT, get_index(inputs, NR_INPUT, op.items), config); \ } \ OP_TRAIT_REG(NAME, NAME).apply_on_var_node(apply_on_var_node).fallback(); \ } FANCY_INDEXING_IMPL(Subtensor, 1) FANCY_INDEXING_IMPL(SetSubtensor, 2) FANCY_INDEXING_IMPL(IncrSubtensor, 2) FANCY_INDEXING_IMPL(IndexingMultiAxisVec, 1) FANCY_INDEXING_IMPL(IndexingSetMultiAxisVec, 2) FANCY_INDEXING_IMPL(IndexingIncrMultiAxisVec, 2) FANCY_INDEXING_IMPL(MeshIndexing, 1) FANCY_INDEXING_IMPL(IncrMeshIndexing, 2) FANCY_INDEXING_IMPL(SetMeshIndexing, 2) FANCY_INDEXING_IMPL(BatchedMeshIndexing, 1) FANCY_INDEXING_IMPL(BatchedIncrMeshIndexing, 2) FANCY_INDEXING_IMPL(BatchedSetMeshIndexing, 2) #undef FANCY_INDEXING_IMPL #undef IN1 #undef IN2 } // anonymous namespace namespace { namespace fake_quant { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 3); OperatorNodeConfig config{op.make_name()}; return opr::FakeQuant::make(inputs[0], inputs[1], inputs[2], op.param(), config); } OP_TRAIT_REG(FakeQuant, FakeQuant).apply_on_var_node(apply_on_var_node).fallback(); } // namespace fake_quant } // namespace namespace { namespace tqt { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; return opr::TQT::make(inputs[0], inputs[1], op.param(), config); } OP_TRAIT_REG(TQT, TQT).apply_on_var_node(apply_on_var_node).fallback(); } // namespace tqt } // namespace namespace { namespace elemwise_multi_type { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); OperatorNodeConfig config{op.dtype}; config.name(op.make_name()); return opr::ElemwiseMultiType::make(inputs, op.param(), config); } OP_TRAIT_REG(ElemwiseMultiType, ElemwiseMultiType) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace elemwise_multi_type } // namespace namespace { namespace svd { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); OperatorNodeConfig config{op.make_name()}; return opr::SVD::make(inputs[0], op.param(), config)[0] .node() ->owner_opr() ->usable_output(); } OP_TRAIT_REG(SVD, SVD).apply_on_var_node(apply_on_var_node).fallback(); } // namespace svd } // namespace namespace { namespace images2neibs { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); OperatorNodeConfig config{op.make_name()}; return opr::Images2Neibs::make(inputs[0], op.param(), config); } OP_TRAIT_REG(Images2Neibs, Images2Neibs) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace images2neibs } // namespace namespace { namespace lsq { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 4); OperatorNodeConfig config{op.make_name()}; return opr::LSQ::make( inputs[0], inputs[1], inputs[2], inputs[3], op.param(), config); } OP_TRAIT_REG(LSQ, LSQ).apply_on_var_node(apply_on_var_node).fallback(); } // namespace lsq } // namespace namespace { namespace sliding_window_transpose { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); OperatorNodeConfig config{op.make_name()}; return opr::SlidingWindowTranspose::make(inputs[0], op.param(), config); } OP_TRAIT_REG(SlidingWindowTranspose, SlidingWindowTranspose) .apply_on_var_node(apply_on_var_node) .fallback(); } // namespace sliding_window_transpose } // namespace namespace { namespace cumsum { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); OperatorNodeConfig config{op.make_name()}; return opr::Cumsum::make(inputs[0], op.param(), config); } OP_TRAIT_REG(Cumsum, Cumsum).apply_on_var_node(apply_on_var_node).fallback(); } // namespace cumsum } // namespace namespace padding { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); return opr::Padding::make(inputs[0], op.param()); } OP_TRAIT_REG(Padding, Padding).apply_on_var_node(apply_on_var_node).fallback(); } // namespace padding namespace lrn { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 1); return opr::LRN::make(inputs[0], op.param()); } OP_TRAIT_REG(LRN, LRN).apply_on_var_node(apply_on_var_node).fallback(); } // namespace lrn namespace layer_norm { cg::OperatorNodeBase* apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); size_t nr_inp = inputs.size(); auto p = op.param(); mgb_assert((nr_inp == 3 && p.affine) || (nr_inp == 1 && !p.affine)); OperatorNodeConfig config{op.make_name()}; if (nr_inp == 3) { return opr::LayerNorm::make( inputs[0], inputs[1], inputs[2], op.param(), config)[0] .node() ->owner_opr(); } else { return opr::LayerNorm::make(inputs[0], op.param(), config)[0] .node() ->owner_opr(); } } OP_TRAIT_REG(LayerNorm, LayerNorm).apply_on_var_node(apply_on_var_node).fallback(); } // namespace layer_norm } // namespace mgb::imperative