/** * \file src/opr/impl/io.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/opr/io.h" #include "megbrain/comp_node_env.h" #include "megbrain/graph/event.h" #include "megbrain/graph/grad_impl.h" #include "megbrain/graph/exc_extra_info.h" #include "megbrain/opr/internal/megdnn_opr_wrapper.h" #include "megbrain/serialization/opr_load_dump.h" using namespace mgb; using namespace opr; namespace { //! helper for implementing oprs that hold a device tensor value namespace dv_helper { void add_output(cg::OperatorNodeBase& opr, DType dtype, const Maybe& name = None); void init_output_mem_plan(const DeviceTensorND& val, cg::OperatorNodeBase& opr, bool dynamic, size_t ovar_idx = 0); void check_in_exec(const DeviceTensorND& val, VarNode* var); } // namespace dv_helper } // anonymous namespace /* ===================== dv_helper ===================== */ void dv_helper::add_output(cg::OperatorNodeBase& opr, DType dtype, const Maybe& name) { mgb_assert(dtype.valid()); opr.add_output(name) ->add_flag(VarNode::Flag::NO_MEM_RECLAIM) .add_flag(VarNode::Flag::PERSISTENT_DEVICE_VALUE) .add_flag(VarNode::Flag::DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC) .dtype(dtype); } void dv_helper::init_output_mem_plan(const DeviceTensorND& val, cg::OperatorNodeBase& opr, bool dynamic, size_t ovar_idx) { mgb_assert(!dynamic); auto ovar = opr.output(ovar_idx); mgb_assert(val.dtype() == ovar->dtype(), "dtype mismatch: get=%s expect=%s opr=%s{%s}", val.dtype().name(), ovar->dtype().name(), opr.cname(), opr.dyn_typeinfo()->name); ovar->init_mem_plan(&val); } void dv_helper::check_in_exec(const DeviceTensorND& val, VarNode* var) { auto&& oval = var->dev_tensor(); if(!(val.comp_node().mem_node() == oval.comp_node().mem_node() && val.raw_ptr() == oval.raw_ptr() && val.layout().eq_layout(oval.layout()) && val.dtype() == var->dtype())) { var->owner_opr()->owner_graph()->record_async_error( cg::OperatorNodeExcExtraInfo::ExcMaker{var->owner_opr()} .make_unique(ssprintf( "value changed in DeviceTensorHolder: cn=(%s,%s), ptr=(%p,%p), " "layout=(%s,%s), dtype=(%s,%s)", val.comp_node().to_string().c_str(), oval.comp_node().to_string().c_str(), val.raw_ptr(), oval.raw_ptr(), val.layout().to_string().c_str(), oval.layout().to_string().c_str(), val.dtype().name(), var->dtype().name()))); } } /* ===================== HostIONodeBase ===================== */ void intl::HostIONodeBase::init_output_static_infer_desc() { using namespace cg::static_infer; auto &&mgr = owner_graph()->static_infer_manager(); auto infer_shp = [this](TensorShape &dest, const InpVal &) -> bool { dest = get_output_shape(); return dest.ndim; }; auto shape_type = static_infer_src_type(); auto opr_load_ctx = owner_graph()->options().user_data.get_user_data< serialization::OprLoadContext>(); if (opr_load_ctx.second) { mgb_assert(opr_load_ctx.second == 1); if (opr_load_ctx.first[0]->config().const_var_shape) { shape_type = cg::static_infer::SourceType::CONSTANT; } } mgr.register_shape_infer(output(0), {shape_type, {}, infer_shp}); if (fill_in_static_infer(nullptr)) { auto infer_val = [this](DeviceTensorND &dest, const InpVal &) -> bool { if (fill_in_static_infer(&dest) && !dest.empty()) { return true; } return false; }; mgr.register_value_infer(output(0), {static_infer_src_type(), {}, infer_val}); } } cg::static_infer::SourceType intl::HostIONodeBase::static_infer_src_type() const { return cg::static_infer::SourceType::MUTABLE; } /* ===================== DeviceTensorHolder ===================== */ class intl::DeviceTensorHolder::DevValueExecDep final : public ExecDependency { DeviceTensorStorage m_val; public: explicit DevValueExecDep(DeviceTensorStorage val) : m_val{std::move(val)} {} }; void intl::DeviceTensorHolder::init_output_format() { auto format = get_dev_tensor().format(); mgb_assert(format.is_default(), "non-default tensor format: %s", format.to_string().c_str()); // no need to set output foramt since it is initialized as default } void intl::DeviceTensorHolder::init_output_mem_plan(bool dynamic) { dv_helper::init_output_mem_plan(get_dev_tensor(), *this, dynamic); } void intl::DeviceTensorHolder::scn_do_execute() { dv_helper::check_in_exec(get_dev_tensor(), output(0)); } void intl::DeviceTensorHolder::add_output(DType dtype) { mgb_assert(output().empty()); dv_helper::add_output(*this, dtype); } void intl::DeviceTensorHolder::record_execute_deps(ExecDependencyArray& deps) { if (!output(0)->contain_flag(VarNode::Flag::MEMORY_NO_NEED)) { deps.emplace_back( std::make_unique(get_dev_tensor().storage())); } } /* ===================== Host2DeviceCopy ===================== */ class Host2DeviceCopy::HostValueExecDep final : public ExecDependency { std::shared_ptr m_hv; void* m_ptr; TensorShape m_shape; public: explicit HostValueExecDep(std::shared_ptr hv) : m_hv{hv}, m_ptr{hv->raw_ptr()}, m_shape{hv->shape()} {} bool has_runtime_check() const override { return true; } void do_runtime_check() override { mgb_assert(m_hv->raw_ptr() == m_ptr && m_hv->shape().eq_shape(m_shape), "host tensor changed: %p(%s) vs %p(%s)", m_hv->raw_ptr(), m_hv->shape().to_string().c_str(), m_ptr, m_shape.to_string().c_str()); } }; MGB_DYN_TYPE_OBJ_FINAL_IMPL(Host2DeviceCopy); Host2DeviceCopy::Host2DeviceCopy(ComputingGraph &graph, const std::shared_ptr &host_data, const Param ¶m, const OperatorNodeConfig &config): Super{&graph, config, "h2d", {}}, m_param{param}, m_host_data{host_data} { auto out_cn = m_host_data->comp_node(); if (config.has_comp_node_set()) out_cn = config.get_single_comp_node(); mgb_assert(out_cn.valid(), "can not get output comp node"); if (param.allow_cpu_mem_fwd && out_cn.mem_node() == CompNode::default_cpu().mem_node() && host_data->comp_node().mem_node() == out_cn.mem_node()) { m_fwd_host_mem = true; dv_helper::add_output(*this, host_data->dtype()); } else { m_fwd_host_mem = false; add_output(None)->dtype(host_data->dtype()); } add_equivalence_component>(host_data.get()); add_equivalence_component>(&m_param); this->comp_node(out_cn); output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); } const TensorShape& Host2DeviceCopy::get_output_shape() { return m_host_data->shape(); } bool Host2DeviceCopy::fill_in_static_infer(DeviceTensorND* dest) { if (!m_param.enable_value_infer) { return false; } if (!dest) { // query whether static infer is supported return true; } if (m_host_data->storage().has_no_real_storage()) { return false; } dest->copy_from(*m_host_data); return true; } void Host2DeviceCopy::scn_do_execute() { if (m_fwd_host_mem) { mgb_assert(m_host_data->comp_node().mem_node() == comp_node().mem_node()); if (m_host_data_dev_cont_need_sync) m_host_data_dev_cont.copy_from_fixlayout(*m_host_data); dv_helper::check_in_exec(get_dev_tensor_in_mem_fwd(), output(0)); } else { auto&& od = output(0)->dev_tensor(); od.copy_from_fixlayout(*m_host_data); } } void Host2DeviceCopy::init_output_mem_plan(bool dynamic) { if (m_fwd_host_mem) { dv_helper::init_output_mem_plan(get_dev_tensor_in_mem_fwd(), *this, dynamic); } else { Super::init_output_mem_plan(dynamic); } } void Host2DeviceCopy::init_output_comp_node() { } const DeviceTensorND& Host2DeviceCopy::get_dev_tensor_in_mem_fwd() const { mgb_assert(m_fwd_host_mem); if (!m_host_data->layout().is_contiguous()) { m_host_data_dev_cont_need_sync = true; m_host_data_dev_cont.comp_node(comp_node()). dtype(m_host_data->dtype()). resize(m_host_data->shape()); return m_host_data_dev_cont; } m_host_data_dev_cont_need_sync = false; m_host_data_dev_proxy = DeviceTensorND::make_proxy(*m_host_data); return m_host_data_dev_proxy; } cg::OperatorNodeBase::NodeProp* Host2DeviceCopy::do_make_node_prop() const { auto ret = Super::do_make_node_prop(); if (m_fwd_host_mem) { ret->add_flag(NodeProp::Flag::IMPURE_OUTPUT_MEM_PLAN); } return ret; } SymbolVar Host2DeviceCopy::make(ComputingGraph &graph, const std::shared_ptr &host_data, const Param ¶m, const OperatorNodeConfig &config) { return graph.insert_opr(std::make_unique( graph, host_data, param, config))->output(0); } void Host2DeviceCopy::record_execute_deps(ExecDependencyArray& deps) { deps.emplace_back( std::make_unique(std::move(m_host_data))); } /* ===================== SharedDeviceTensor related ===================== */ intl::SharedDeviceTensorBase::SharedDeviceTensorBase( ComputingGraph& graph, const std::shared_ptr& dev_data, bool const_value, const OperatorNodeConfig& config) : Super{&graph, config, "shared", {}}, m_dev_data{dev_data}, m_const_value(const_value) { if (config.has_comp_node_set()) { mgb_assert(config.get_single_comp_node() == dev_data->comp_node()); } add_output(dev_data->dtype()); add_equivalence_component>(dev_data.get()); } const TensorShape& intl::SharedDeviceTensorBase::get_output_shape() { return m_dev_data->shape(); } void intl::SharedDeviceTensorBase::init_output_comp_node() { if (config().has_comp_node_set()) { mgb_throw_if(config().get_single_comp_node() != m_dev_data->comp_node(), GraphError, "SharedDeviceTensor: comp node in config differs from that in" " dev_data"); } comp_node(m_dev_data->comp_node()); } cg::static_infer::SourceType SharedDeviceTensor::static_infer_src_type() const { return cg::static_infer::SourceType::CONSTANT; } SymbolVar SharedDeviceTensor::make(ComputingGraph &graph, const std::shared_ptr &dev_data, bool const_value, const OperatorNodeConfig &config) { return graph.insert_opr(std::make_unique( graph, dev_data, const_value, config))->output(0); } SymbolVar SharedDeviceTensor::make(ComputingGraph &graph, const HostTensorND &value, bool const_value, const OperatorNodeConfig &config) { auto cn = value.comp_node(); if (config.has_comp_node_set()) cn = config.get_single_comp_node(); auto dev_v = std::make_shared(); dev_v->comp_node(cn).copy_from(value).sync(); return make(graph, dev_v, const_value, config); } MGB_DYN_TYPE_OBJ_FINAL_IMPL(SharedDeviceTensor); cg::OperatorNodeBase::NodeProp* VolatileSharedDeviceTensor::do_make_node_prop() const { auto ret = Super::do_make_node_prop(); ret->add_flag(NodeProp::Flag::IMPURE_OUTPUT_MEM_PLAN); return ret; } SymbolVar VolatileSharedDeviceTensor::make(ComputingGraph &graph, const std::shared_ptr &dev_data, const OperatorNodeConfig &config) { return graph.insert_opr(std::make_unique( graph, dev_data, false, config))->output(0); } MGB_DYN_TYPE_OBJ_FINAL_IMPL(VolatileSharedDeviceTensor); /* ============== SharedDeviceTensorWithFormat =============== */ void SharedDeviceTensorWithFormat::init_output_format() { output(0)->format(get_dev_tensor().format()); } SymbolVar SharedDeviceTensorWithFormat::make( ComputingGraph& graph, const std::shared_ptr& dev_data, bool const_value, const OperatorNodeConfig& config) { auto&& opr = graph.insert_opr(std::make_unique( graph, dev_data, const_value, config)) ->cast_final_safe(); return opr.output(0); } cg::static_infer::SourceType SharedDeviceTensorWithFormat::static_infer_src_type() const { return cg::static_infer::SourceType::CONSTANT; } MGB_DYN_TYPE_OBJ_FINAL_IMPL(SharedDeviceTensorWithFormat); /* ===================== ImmutableTensor ===================== */ MGB_DYN_TYPE_OBJ_FINAL_IMPL(ImmutableTensor); class ImmutableTensor::Value { std::mutex m_mtx; DeviceTensorND m_dev, m_static_infer; std::string m_summary; public: void setup(CompNode cn, const HostTensorND &val); bool initialized() const { return m_dev.shape_valid(); } //! value on comp node const DeviceTensorND& dev() const { return m_dev; } //! get value on static infer CPU node DeviceTensorND& static_infer(); //! string summary of the value const std::string& summary() const { return m_summary; } }; void ImmutableTensor::Value::setup(CompNode cn, const HostTensorND &val) { mgb_assert(m_dev.empty() && !m_dev.shape_valid()); m_dev.comp_node(cn).copy_from(val).sync(); mgb_assert(val.empty() == m_dev.empty()); auto one_elem = [](const TensorShape& shape) { for (size_t i = 0; i < shape.ndim; ++i) { if (shape[i] != 1) return false; } return true; }; if (one_elem(val.shape())) { float v; static_cast_dtype(&v, val.dtype(), val.raw_ptr()); m_summary = ssprintf("%.3g", v); if (val.shape().ndim != 1) { m_summary += val.shape().to_string(); } } else { m_summary = ssprintf("const%s", val.shape().to_string().c_str()); } } DeviceTensorND& ImmutableTensor::Value::static_infer() { MGB_LOCK_GUARD(m_mtx); if (m_static_infer.empty()) { mgb_assert(!m_dev.empty()); m_static_infer.comp_node(CompNode::default_cpu()).copy_from(m_dev); } return m_static_infer; } class ImmutableTensor::DevValueCache final: public UserDataContainer::UserData { MGB_TYPEINFO_OBJ_DECL; CompNode m_comp_node; class TensorKey { struct Trait { size_t hash = 0, size_bytes = 0; TensorLayout layout; }; Trait m_trait; std::vector m_val; HostTensorND m_val_ref; const dt_byte* val_ptr() const { mgb_assert(m_trait.size_bytes); return m_val.empty() ? m_val_ref.raw_ptr() : m_val.data(); } public: TensorKey() = default; TensorKey(const HostTensorND &v): m_val_ref{v} { mgb_assert(v.layout().is_contiguous() || v.layout().is_empty()); m_trait.size_bytes = v.layout().span().high_byte; auto &&layout = m_trait.layout; // zero to enable byte-comparison memset(&layout, 0, sizeof(layout)); layout.ndim = v.layout().ndim; layout.dtype = v.layout().dtype; for (size_t i = 0; i < layout.ndim; ++ i) { layout.shape[i] = v.layout().shape[i]; layout.stride[i] = v.layout().stride[i]; } XXHash hasher; if (!v.empty()) { hasher.update(v.raw_ptr(), m_trait.size_bytes); } hasher.update(&m_trait.layout, sizeof(m_trait.layout)); m_trait.hash = hasher.digest(); } bool operator == (const TensorKey &rhs) const { return !memcmp(&m_trait, &rhs.m_trait, sizeof(Trait)) && ((m_trait.size_bytes == 0 && rhs.m_trait.size_bytes == 0) || !memcmp(val_ptr(), rhs.val_ptr(), m_trait.size_bytes)); } size_t hash() const { return m_trait.hash; } //! copy from m_val_ref to m_val, to avoid refed value being //! modified void copy_val_permanent() { if (m_trait.size_bytes == 0) return; mgb_assert(m_val.empty()); m_val.resize(m_trait.size_bytes); memcpy(m_val.data(), m_val_ref.raw_ptr(), m_trait.size_bytes); m_val_ref = {}; } }; struct ScalarKey { size_t hash = 0; DTypeScalar val; ScalarKey() = default; ScalarKey(const DTypeScalar &v): val{v} { hash = PODHash::perform(&val, 1); } bool operator == (const ScalarKey &rhs) const { return val == rhs.val; } }; struct Hash { size_t operator() (const TensorKey &key) const { return key.hash(); } size_t operator() (const ScalarKey &key) const { return key.hash; } }; std::unordered_map m_tensor2val; std::unordered_map m_scalar2val; std::mutex m_mtx; void setup_value(Value &dest, const HostTensorND &val) { dest.setup(m_comp_node, val); } public: //! max number of elements for a tensor to be stored in this cache static constexpr size_t MAX_SIZE = TensorLayout::MAX_NDIM * 4; struct VarNodeCache; DevValueCache(const CompNodeEnv &env): m_comp_node{env.comp_node()} { } static DevValueCache& inst(CompNode cn) { auto &&env = CompNodeEnv::from_comp_node(cn); auto maker = [&]() { return std::make_shared(env); }; return env.get_user_data(maker); } const Value& get(const HostTensorND &tensor) { if (tensor.shape().is_scalar()) { return get(DTypeScalar::make_from_raw( tensor.dtype(), tensor.raw_ptr())); } MGB_LOCK_GUARD(m_mtx); TensorKey key{tensor}; Value &item = m_tensor2val[key]; if (!item.initialized()) { setup_value(item, tensor); const_cast(m_tensor2val.find(key)->first). copy_val_permanent(); } return item; } const Value& get(const DTypeScalar &scalar) { MGB_LOCK_GUARD(m_mtx); ScalarKey key{scalar}; Value &item = m_scalar2val[key]; if (!item.initialized()) { HostTensorND hv{m_comp_node, scalar.dtype()}; hv.resize({1}); memcpy(hv.raw_ptr(), scalar.storage(), scalar.dtype().size(1)); setup_value(item, hv); } return item; } }; MGB_TYPEINFO_OBJ_IMPL(ImmutableTensor::DevValueCache); using ImmutableTensorDevValueCache = ImmutableTensor::DevValueCache; struct ImmutableTensor::DevValueCache::VarNodeCache final: public UserDataContainer::UserData { ThinHashMap val2var; MGB_TYPEINFO_OBJ_DECL; }; MGB_TYPEINFO_OBJ_IMPL(ImmutableTensor::DevValueCache::VarNodeCache); ImmutableTensor::ImmutableTensor(ComputingGraph &graph, const Value &value, const OperatorNodeConfig &config): Super{&graph, config, value.summary(), {}}, m_value{value} { mgb_assert(value.initialized()); add_output(value.dev().dtype()); add_equivalence_component>(&value); output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); } ImmutableTensor::~ImmutableTensor() noexcept = default; SymbolVar ImmutableTensor::make(ComputingGraph &graph, const HostTensorND &val, const OperatorNodeConfig &config) { auto cn = val.comp_node(); if (config.has_comp_node_set()) cn = config.get_single_comp_node(); if (val.shape().total_nr_elems() > DevValueCache::MAX_SIZE) { // tensor too large, do not dedup auto value = std::make_shared(); value->setup(cn, val); return make_from_value(graph, *value, value, config); } auto &&cache = DevValueCache::inst(cn); return make_from_value(graph, cache.get(val), {}, config); } SymbolVar ImmutableTensor::make(ComputingGraph &graph, const DTypeScalar &val, const OperatorNodeConfig &config) { mgb_assert(config.has_comp_node_set(), "comp node must be set for constructing ImmutableTensor from " "DTypeScalar"); auto cn = config.get_single_comp_node(); auto &&cache = DevValueCache::inst(cn); return make_from_value(graph, cache.get(val), {}, config); } const DeviceTensorND& ImmutableTensor::value() const { return m_value.dev(); } const DeviceTensorND& ImmutableTensor::host_value() { return const_cast(&m_value)->static_infer(); } SymbolVar ImmutableTensor::make_from_value( ComputingGraph &graph, const Value &val, const std::shared_ptr &val_refkeep, const OperatorNodeConfig &config) { auto ud = graph.options().user_data.get_user_data_or_create ( std::make_shared); SymbolVar &var = ud->val2var[&val]; if (!var.node()) { var = graph.insert_opr(std::make_unique( graph, val, config))->output(0); if (val_refkeep) { auto &&opr = var.node()->owner_opr()->cast_final(); mgb_assert(&opr.m_value == val_refkeep.get() && !opr.m_value_refkeep); opr.m_value_refkeep = val_refkeep; } } #if !MGB_BUILD_SLIM_SERVING // FIXME: make() of immutable tensor would return immediately instead of // calling insert_opr() when hitting cache, so we need call it munually. // see MGE-81 else { if (graph.options().eager_evaluation) { auto &&opr = var.node()->owner_opr(); graph.insert_opr(std::unique_ptr(opr)); } } #endif return var; } void ImmutableTensor::init_output_comp_node() { comp_node(m_value.dev().comp_node()); } const TensorShape& ImmutableTensor::get_output_shape() { return m_value.dev().shape(); } bool ImmutableTensor::fill_in_static_infer(DeviceTensorND *dest) { if (dest) *dest = const_cast(m_value).static_infer(); return true; } const DeviceTensorND& ImmutableTensor::get_dev_tensor() const { return m_value.dev(); } cg::static_infer::SourceType ImmutableTensor::static_infer_src_type() const { return cg::static_infer::SourceType::CONSTANT; } /* ===================== Copy ===================== */ MGB_DYN_TYPE_OBJ_FINAL_IMPL(Copy); Copy::Copy(VarNode *inp, const OperatorNodeConfig &config): Super{inp->owner_graph(), config, "copy", {inp}} { add_input({inp}); add_output(None); } SymbolVar Copy::make(SymbolVar inp, const OperatorNodeConfig &config) { return inp.insert_single_output_opr(inp.node(), config); } void Copy::mem_plan_fwd_in2out_readonly() { if (owner_graph()->options().force_dynamic_alloc) { // copy on same CN in force_dynamic_alloc graphs usually used for // resolving dependency // TODO: add an option disable_auto_memfwd for Copy m_mem_fwd_success = false; return; } if (output(0)->comp_node().mem_node() == input(0)->comp_node().mem_node()) { m_mem_fwd_success = output(0)->set_fwd_in2out_readonly( input(0), SubTensorSpec::make_from_layout(input(0)->layout())); } else m_mem_fwd_success = false; } void Copy::init_output_comp_node() { Super::init_output_comp_node(); if (output(0)->comp_node().mem_node() != input(0)->comp_node().mem_node()) { owner_graph()->seq_comp_node_optimizer().register_stream_var( output(0), {CompNode::Stream::COPY, cg::SeqCompNodeOptimizer::StreamPropType::WEAK}); } } void Copy::init_rt_force_dynamic_mem_alloc_imply_chain() { auto ivar = input(0), ovar = output(0); auto cn0 = ivar->comp_node(), cn1 = ovar->comp_node(); if (cn0 != cn1 && cn0.mem_node() == cn1.mem_node()) { // make it possible to forward memory between comp nodes on the same mem // node ivar->add_rt_force_dynamic_mem_alloc_imply_chain(ovar); ovar->add_rt_force_dynamic_mem_alloc_imply_chain(ivar); } } void Copy::scn_do_execute() { auto &&od = output(0)->dev_tensor(), &&id = input(0)->dev_tensor(); if (m_mem_fwd_success) { mgb_assert(od.raw_ptr() == id.raw_ptr() && od.layout().eq_layout(id.layout())); } else { od.copy_from_fixlayout(id); } } Copy::NodeProp* Copy::do_make_node_prop() const { auto rst = Super::do_make_node_prop(); using F = NodeProp::Flag; rst->add_flag(F::CROSS_COMP_NODE_MEMORY); rst->add_flag(F::NO_AUTOMATIC_DUP); return rst; } #if MGB_ENABLE_GRAD MGB_IMPL_OPR_GRAD(Copy) { mgb_assert(wrt_idx == 0); return Copy::make(out_grad[0], OperatorNodeConfig{}.follow_comp_node(opr.input(0))).node(); } #endif void Copy::add_input_layout_constraint() { if (input(0)->comp_node() != output(0)->comp_node()) { auto check = [this](const TensorLayout& layout) { auto handle = intl::get_megdnn_handle(this->comp_node()); return handle->check_cross_dev_copy_constraint(layout); }; input(0)->add_layout_constraint(check); } } void Copy::init_output_static_infer_desc() { using namespace cg::static_infer; Super::init_output_static_infer_desc(); owner_graph()->static_infer_manager().register_value_infer( output(0), ValueInferDesc::make_identity(input(0))); } /* ===================== MultipleDeviceTensorHolderBase ===================== */ class intl::MultipleDeviceTensorHolderBase::DevValuesExecDep final : public ExecDependency { SmallVector m_vals; public: explicit DevValuesExecDep(const ValueArray& vals, MultipleDeviceTensorHolderBase* opr) { mgb_assert(vals.size() == opr->output().size(), "the output value size is diff from output var size"); for (size_t index = 0; index < vals.size(); index++) { if (!opr->output(index)->contain_flag( VarNode::Flag::MEMORY_NO_NEED)) { m_vals.emplace_back(std::move(vals[index]->storage())); } } } }; intl::MultipleDeviceTensorHolderBase::MultipleDeviceTensorHolderBase( ComputingGraph& graph, ValueArray values, const OperatorNodeConfig& config) : Super(&graph, config, "multi_dv", {}), m_values{std::move(values)} { mgb_assert( !config.has_comp_node_set(), "comp node should not be set for MultipleDeviceTensorHolderBase"); for (size_t i = 0; i < m_values.size(); ++i) { dv_helper::add_output(*this, m_values[i]->dtype(), ssprintf("o%zu", i)); add_equivalence_component>(m_values[i].get()); } } void intl::MultipleDeviceTensorHolderBase::do_execute(ExecEnv& env) { // only dispatch to first comp node since all device values should be ready // due to PERSISTENT_DEVICE_VALUE auto work = [this]() { auto&& out = output(); for (size_t i = 0; i < m_values.size(); ++i) { dv_helper::check_in_exec(*m_values[i], out[i]); } }; env.dispatch_on_comp_node(output(0)->comp_node(), work); // Send BeforeKernel/AfterKernel event on every different comp_node ThinHashSet st = cg::get_opr_comp_node_set(this); for (auto cn : st) { auto send_event = [this, cn]() { this->owner_graph() ->event() .signal_inplace(this, cn); this->owner_graph()->event().signal_inplace( this, cn); }; env.dispatch_on_comp_node(cn, send_event); } } void intl::MultipleDeviceTensorHolderBase::init_output_mem_plan(bool dynamic) { for (size_t i = 0; i < m_values.size(); ++i) { dv_helper::init_output_mem_plan(*m_values[i], *this, dynamic, i); } } void intl::MultipleDeviceTensorHolderBase::on_output_comp_node_stream_changed() { mgb_throw(SystemError, "comp node of device tensor should not change"); } void intl::MultipleDeviceTensorHolderBase::init_output_comp_node() { for (size_t i = 0; i < m_values.size(); ++i) { output(i)->comp_node(m_values[i]->comp_node()); } } void intl::MultipleDeviceTensorHolderBase::init_output_static_infer_desc() { using namespace cg::static_infer; auto&& mgr = owner_graph()->static_infer_manager(); for (size_t i = 0; i < m_values.size(); ++i) { auto infer_shp = [p = m_values[i].get()](TensorShape & dest, const InpVal&) ->bool { dest = p->shape(); return dest.ndim; }; mgr.register_shape_infer(output(i), {SourceType::CONSTANT, {}, infer_shp}); } } intl::MultipleDeviceTensorHolderBase::NodeProp* intl::MultipleDeviceTensorHolderBase::do_make_node_prop() const { auto ret = Super::do_make_node_prop(); ret->add_flag(NodeProp::Flag::CROSS_COMP_NODE_MEMORY); return ret; } void intl::MultipleDeviceTensorHolderBase::record_execute_deps( ExecDependencyArray& deps) { deps.emplace_back(std::make_unique(values(), this)); } /* ===================== MultipleDeviceTensorHolder ===================== */ MGB_DYN_TYPE_OBJ_FINAL_IMPL(MultipleDeviceTensorHolder); SymbolVarArray MultipleDeviceTensorHolder::make( ComputingGraph& graph, ValueArray values, const OperatorNodeConfig& config) { return cg::to_symbol_var_array( graph.insert_opr( std::make_unique( graph, std::move(values), config)) ->output()); } /* ================== MultipleDeviceTensorWithFormatHolder ================== */ MGB_DYN_TYPE_OBJ_FINAL_IMPL(MultipleDeviceTensorWithFormatHolder); SymbolVarArray MultipleDeviceTensorWithFormatHolder::make( ComputingGraph& graph, ValueArray values, const OperatorNodeConfig& config) { return cg::to_symbol_var_array( graph.insert_opr( std::make_unique( graph, std::move(values), config)) ->output()); } void MultipleDeviceTensorWithFormatHolder::init_output_format() { for (size_t i = 0; i < m_values.size(); ++i) { output(i)->format(m_values[i]->format()); } } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}