/** * \file src/gopt/impl/tensor_reformat.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "megbrain/gopt/inference.h" #include "megbrain/gopt/gtrans.h" #include "megbrain/gopt/basic_arith.h" #include "megbrain/graph/event.h" #include "megbrain/opr/dnn/batch_norm.h" #include "megbrain/opr/dnn/local.h" #include "megbrain/utils/shared_set.h" #include "megbrain/serialization/opr_shallow_copy.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/misc.h" #include "megbrain/opr/utility.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/nn_int.h" #include "megdnn/opr_param_defs.h" #include "megdnn/tensor_format.h" #if MGB_ENABLE_TENSOR_RT #include "megbrain/tensorrt/tensorrt_opr.h" #endif #include "megbrain/gopt/misc.h" using namespace mgb; using namespace gopt; /* ================ TensorReformatPass =============== */ /*! * \brief relayout placeholder opr * * RelayoutPlaceholder oprs act as the placeholders of the ComputingGraph * during graph opt pass `TensorReformatPass`. These oprs are introduced * into a ComputingGraph for conveniently discovering further optimize * opportunities (such as fuse consecutive relayouts, translate into * optimized implementations). They are canonized to have a shape infer, so * the ouput's shape can be correctly deduced during the opt pass. * * Note that the oprs in the ComputingGraph are only used as intermediate * representations before being translated to MegBrain oprs, so the * oprs should not get involved in any actual computing. */ MGB_DEFINE_OPR_CLASS(TensorReformatPass::RelayoutPlaceholder, cg::SingleCNOperatorNodeBase) // { public: //! relayout type of this opr enum class LayoutType { NCHW4_TO_NCHW32, //!< from nchw4 layout to nchw32 layout NCHW32_TO_NCHW4, //!< from nchw32 layout to nchw4 layout NCHW4_TO_CHWN4, //!< from nchw4 layout to chwn4 layout CHWN4_TO_NCHW4, //!< from chwn4 layout to nchw4 layout NCHW_TO_NCHW4, //!< from nchw layout to nchw4 layout NCHW4_TO_NCHW, //!< from nchw4 layout to nchw layout NCHW_TO_NCHW88, //!< from nchw layout to nchw88 layout NCHW88_TO_NCHW, //!< from nchw88 layout to nchw layout WEIGHT_NCHW_TO_NCHW4_DENSE, //!< weight from nchw layout to nchw4 //!< layout WEIGHT_NCHW_TO_NCHW4_GROUP, //!< group weight from nchw layout to //!< nchw4 layout WEIGHT_NCHW_TO_NCHW88_DENSE, //!< weight from nchw layout to nchw88 //!< layout WEIGHT_NCHW_TO_NCHW88_GROUP, //!< group weight from nchw layout to //!< nchw88 layout WEIGHT_NCHW_TO_NCHW88_CHAN, //!< channel wise weight from nchw layout //!< to nchw88 layout //!< the weight layout of input is nchw output is nchw88, special for //!< shape weight in nchw like {64, 2, 3, 3} to {8, 3, 3, 2, 8} WEIGHT_HYBIRD_NCHW_NCHW88, WEIGHT_NCHW_TO_NCHW44_DENSE, //!< weight from nchw layout to nchw44 //!< layout WEIGHT_NCHW_TO_NCHW44_GROUP, //!< group weight from nchw layout to //!< nchw44 layout WEIGHT_NCHW_TO_NCHW44_CHAN, //!< channel wise weight from nchw layout //!< to nchw44 layout //!< the weight layout of input is nchw output is nchw44, special for //!< shape weight in nchw like {64, 2, 3, 3} to {16, 3, 3, 2, 4} WEIGHT_HYBIRD_NCHW_NCHW44, WEIGHT_NCHW_TO_NCHW44_DOT_DENSE, //!< weight from NCHW44 layout to //!< NCHW44_DOT layout dense WEIGHT_NCHW_TO_NCHW44_DOT_GROUP, //!< weight from NCHW44 layout to //!< NCHW44_DOT layout group }; RelayoutPlaceholder(VarNode* src_var, LayoutType layout_type); /*! * \param src_var the input var * \param layout_type tensor layout transform type of this relayout * placeholder as described in LayoutType */ static SymbolVar make(VarNode* src_var, LayoutType layout_type); LayoutType layout_type() const { return m_layout_type; } private: void init_output_static_infer_desc() override; void scn_do_execute() override; void init_output_comp_node() override; const LayoutType m_layout_type; }; MGB_DYN_TYPE_OBJ_FINAL_IMPL(TensorReformatPass::RelayoutPlaceholder); TensorReformatPass::RelayoutPlaceholder::RelayoutPlaceholder( VarNode* src_var, LayoutType layout_type) : Super(src_var->owner_graph(), {}, "RelayoutPlaceholder", {src_var}), m_layout_type{layout_type} { add_input({src_var}); add_equivalence_component>(m_layout_type); add_output(None)->dtype(src_var->dtype()); } void TensorReformatPass::RelayoutPlaceholder::scn_do_execute() { mgb_throw(InternalError, "RelayoutPlaceholder opr can not be executed"); } void TensorReformatPass::RelayoutPlaceholder::init_output_comp_node() { output(0)->comp_node(input(0)->comp_node()); } void TensorReformatPass::RelayoutPlaceholder::init_output_static_infer_desc() { using namespace cg::static_infer; auto&& mgr = owner_graph()->static_infer_manager(); DepVal deps; for (auto i : input()) deps.push_back({i, DepType::SHAPE}); auto infer_shape = [this](TensorShape& dst, const InpVal& inp) { TensorShape inp_shape = inp.val[0].shape(); dst = inp_shape; if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW32) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4] * 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW32_TO_NCHW4) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 32); dst[0] = inp_shape[0]; dst[1] = inp_shape[1] * 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4] / 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW4_TO_CHWN4) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst[0] = inp_shape[1]; dst[1] = inp_shape[2]; dst[2] = inp_shape[3]; dst[3] = inp_shape[0]; dst[4] = inp_shape[4]; } else if (layout_type() == RelayoutPlaceholder::LayoutType::CHWN4_TO_NCHW4) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst[0] = inp_shape[3]; dst[1] = inp_shape[0]; dst[2] = inp_shape[1]; dst[3] = inp_shape[2]; dst[4] = inp_shape[4]; } else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW_TO_NCHW4){ mgb_assert(inp_shape.ndim == 4 && inp_shape[1] % 4 == 0); dst.ndim = 5; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 4; } else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW){ mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst.ndim = 4; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] * 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW4_DENSE) { mgb_assert(inp_shape.ndim == 4 && inp_shape[1] % 4 == 0); dst.ndim = 5; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 4; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW4_GROUP) { mgb_assert(inp_shape.ndim == 5 && inp_shape[2] % 4 == 0); dst.ndim = 6; dst[0] = inp_shape[0]; dst[1] = inp_shape[1]; dst[2] = inp_shape[2] / 4; dst[3] = inp_shape[3]; dst[4] = inp_shape[4]; dst[5] = 4; }else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW_TO_NCHW88) { mgb_assert(inp_shape.ndim == 4 && inp_shape[1] % 8 == 0); dst.ndim = 5; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType::NCHW88_TO_NCHW) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 8); dst.ndim = 4; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] * 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW88_DENSE) { mgb_assert(inp_shape.ndim == 4 && inp_shape[0] % 8 == 0 && inp_shape[1] % 8 == 0); dst.ndim = 6; dst[0] = inp_shape[0] / 8; dst[1] = inp_shape[1] / 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 8; dst[5] = 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW88_GROUP) { mgb_assert(inp_shape.ndim == 5 && inp_shape[1] % 8 == 0 && inp_shape[2] % 8 == 0); dst.ndim = 7; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 8; dst[2] = inp_shape[2] / 8; dst[3] = inp_shape[3]; dst[4] = inp_shape[4]; dst[5] = 8; dst[6] = 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW88_CHAN) { mgb_assert(inp_shape.ndim == 5 && inp_shape[1] == 1 && inp_shape[2] == 1 && inp_shape[0] % 8 == 0); dst.ndim = 6; dst[0] = inp_shape[0] / 8; dst[1] = inp_shape[1]; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4]; dst[5] = 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType::WEIGHT_HYBIRD_NCHW_NCHW88) { mgb_assert(inp_shape.ndim == 4 && inp_shape[0] % 8 == 0); dst.ndim = 5; dst[0] = inp_shape[0] / 8; dst[1] = inp_shape[2]; dst[2] = inp_shape[3]; dst[3] = inp_shape[1]; dst[4] = 8; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW44_DENSE || layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW44_DOT_DENSE) { mgb_assert(inp_shape.ndim == 4 && inp_shape[0] % 4 == 0 && inp_shape[1] % 4 == 0); dst.ndim = 6; dst[0] = inp_shape[0] / 4; dst[1] = inp_shape[1] / 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 4; dst[5] = 4; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW44_GROUP || layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW44_DOT_GROUP) { mgb_assert(inp_shape.ndim == 5 && inp_shape[1] % 4 == 0 && inp_shape[2] % 4 == 0); dst.ndim = 7; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 4; dst[2] = inp_shape[2] / 4; dst[3] = inp_shape[3]; dst[4] = inp_shape[4]; dst[5] = 4; dst[6] = 4; } else if (layout_type() == RelayoutPlaceholder::LayoutType:: WEIGHT_NCHW_TO_NCHW44_CHAN) { mgb_assert(inp_shape.ndim == 5 && inp_shape[1] == 1 && inp_shape[2] == 1 && inp_shape[0] % 4 == 0); dst.ndim = 6; dst[0] = inp_shape[0] / 4; dst[1] = inp_shape[1]; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4]; dst[5] = 4; } else { mgb_assert( layout_type() == RelayoutPlaceholder::LayoutType::WEIGHT_HYBIRD_NCHW_NCHW44); mgb_assert(inp_shape.ndim == 4 && inp_shape[0] % 4 == 0); dst.ndim = 5; dst[0] = inp_shape[0] / 4; dst[1] = inp_shape[2]; dst[2] = inp_shape[3]; dst[3] = inp_shape[1]; dst[4] = 4; } return true; }; mgr.register_shape_infer(output(0), {SourceType::DEP, deps, infer_shape}); } SymbolVar TensorReformatPass::RelayoutPlaceholder::make( VarNode* src_var, LayoutType layout_type) { return src_var->owner_graph() ->insert_opr( std::make_unique(src_var, layout_type)) ->output(0); } void TensorReformatPass::insert_pass(OptState& opt) const { opt.set_var_replace_check_flag(m_var_replace_check_flag); auto rewriter = opt.graph().make_rewriter(); VarNodeArray new_inp_cache; auto on_opr = [this, &opt, &rewriter, &new_inp_cache](OperatorNodeBase* opr) { auto it = m_opr_replace_func.find(opr->dyn_typeinfo()); if (it != m_opr_replace_func.end()) { auto& new_inp = new_inp_cache; new_inp.clear(); new_inp.reserve(opr->input().size()); for (auto&& inp : opr->input()) { new_inp.push_back(rewriter.get_var(inp)); } auto new_opr = (it->second)(opr, new_inp); auto &&out0 = opr->output(), &&out1 = new_opr->output(); mgb_assert(out0.size() == out1.size(), "bad opr replace: src=%s{%s} dst=%s{%s}, src.size=%zu " "dst.size=%zu", opr->cname(), opr->dyn_typeinfo()->name, new_opr->cname(), new_opr->dyn_typeinfo()->name, out0.size(), out1.size()); for (size_t i = 0; i < out0.size(); ++i) { if (!out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { mgb_assert(!out1[i]->contain_flag( VarNode::Flag::VOLATILE_CONTENT)); auto src = out0[i]; auto dst = out1[i]; if (opt.graph().endpoint_contain(src)) { // additional process on endpoint var node dst = on_graph_endpoint_var(dst, src); } rewriter.replace_var(src, dst, nullptr); } } } else { rewriter.auto_replace_outputs(opr); } }; opt.graph().iter(on_opr); rewriter.apply_inplace(); } void TensorReformatPass::translate_pass(OptState& opt) const { ThinHashMap> reformat; using LayoutType = RelayoutPlaceholder::LayoutType; reformat[LayoutType::NCHW4_TO_CHWN4] = [](VarNode* inp) -> VarNode* { megdnn::param::RelayoutFormat param; param.mode = megdnn::param::RelayoutFormat::Mode::NCHW4_CHWN4; auto reformat = opr::RelayoutFormat::make(inp, param); return reformat.node(); }; reformat[LayoutType::CHWN4_TO_NCHW4] = [](VarNode* inp) -> VarNode* { megdnn::param::RelayoutFormat param; param.mode = megdnn::param::RelayoutFormat::Mode::CHWN4_NCHW4; auto reformat = opr::RelayoutFormat::make(inp, param); return reformat.node(); }; reformat[LayoutType::NCHW4_TO_NCHW32] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::NCHW32_TO_NCHW4] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1), sub(2), sub(3), cv(8), sub(4) / 8}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) * 8, sub(2), sub(3), sub(4) / 8}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 4, 2, 3, 5}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::NCHW_TO_NCHW4] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2}); return y1.node(); }; reformat[LayoutType::NCHW4_TO_NCHW] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0); auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3}); auto y1 = opr::Reshape::make(y0, tshp0); return y1.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW4_DENSE] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) / 4, sub(2), sub(3), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW4_GROUP] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1), sub(2) / 4, cv(4), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1), sub(2) / 4, sub(3), sub(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 2, 4, 5, 3}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::NCHW_TO_NCHW88] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1) / 8, cv(8), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) / 8, sub(2), sub(3), cv(8)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::NCHW88_TO_NCHW] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make({sub(0), sub(1) * 8, sub(2), sub(3)}, 0); auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3}); auto y1 = opr::Reshape::make(y0, tshp0); return y1.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW88_DENSE] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 8, cv(8), sub(1) / 8, cv(8), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0) / 8, sub(1) / 8, sub(2), sub(3), cv(8), cv(8)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 2, 4, 5, 3, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW88_GROUP] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make({sub(0), sub(1) / 8, cv(8), sub(2) / 8, cv(8), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make({sub(0), sub(1) / 8, sub(2) / 8, sub(3), sub(4), cv(8), cv(8)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 5, 6, 4, 2}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW88_CHAN] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 8, cv(8), sub(1), sub(2), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make( {sub(0) / 8, sub(1), sub(2), sub(3), sub(4), cv(8)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 2, 3, 4, 5, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_HYBIRD_NCHW_NCHW88] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 8, cv(8), sub(1), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0) / 8, sub(2), sub(3), sub(1), cv(8)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 3, 4, 2, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW44_DENSE] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 4, cv(4), sub(1) / 4, cv(4), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0) / 4, sub(1) / 4, sub(2), sub(3), cv(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 2, 4, 5, 3, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW44_GROUP] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2) / 4, cv(4), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make({sub(0), sub(1) / 4, sub(2) / 4, sub(3), sub(4), cv(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 5, 6, 4, 2}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW44_CHAN] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 4, cv(4), sub(1), sub(2), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make( {sub(0) / 4, sub(1), sub(2), sub(3), sub(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 2, 3, 4, 5, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_HYBIRD_NCHW_NCHW44] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 4, cv(4), sub(1), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0) / 4, sub(2), sub(3), sub(1), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 3, 4, 2, 1}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW44_DOT_DENSE] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0) / 4, cv(4), sub(1) / 4, cv(4), sub(2), sub(3)}, 0), tshp1 = opr::Concat::make( {sub(0) / 4, sub(1) / 4, sub(2), sub(3), cv(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 2, 4, 5, 1, 3}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; reformat[LayoutType::WEIGHT_NCHW_TO_NCHW44_DOT_GROUP] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2) / 4, cv(4), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make({sub(0), sub(1) / 4, sub(2) / 4, sub(3), sub(4), cv(4), cv(4)}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 5, 6, 2, 4}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; auto rewriter = opt.graph().make_rewriter(); auto on_opr = [&reformat, &rewriter](OperatorNodeBase* opr) { if (opr->same_type()) { auto ph = try_cast_as_op(opr); auto new_inp = rewriter.get_var(opr->input(0)); mgb_assert(reformat.count(ph->layout_type()), "no replace rule can be found for layout_type(%u)", static_cast(ph->layout_type())); auto new_var = reformat[ph->layout_type()](new_inp); rewriter.replace_var(opr->output(0), new_var, mgb_cstr_log("replace relayout placeholder")); return; } rewriter.auto_replace_outputs(opr); }; opt.graph().iter(on_opr); rewriter.apply_inplace(); } void TensorReformatPass::apply(OptState& opt) const { insert_pass(opt); translate_pass(opt); } /* ================ EnableTensorCorePass =============== */ VarNode* EnableTensorCorePass::on_graph_endpoint_var(VarNode* new_var, VarNode* orig_var) const { if (!orig_var->shape().eq_shape(new_var->shape())) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::NCHW32_TO_NCHW4) .node(); } return new_var; } std::unique_ptr EnableTensorCorePass::make_tensorcore_converter() { // replace rule for conv bias opr auto replace_conv_bias_opr = [](OperatorNodeBase* opr, const VarNodeArray& new_inp) { using Param = megdnn::param::ConvBias; using Format = Param::Format; using Sparse = Param::Sparse; mgb_assert(opr->input().size() == new_inp.size()); auto& conv_bias = opr->cast_final_safe(); if (conv_bias.param().format != Format::NCHW4 || conv_bias.output(0)->dtype().enumv() != DTypeEnum::QuantizedS8) { size_t nr_inps = opr->input().size(); bool shape_has_changed = false; for (size_t i = 0; i < nr_inps; ++i) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { shape_has_changed = true; } } MGB_MARK_USED_VAR(shape_has_changed); mgb_assert( !shape_has_changed, "EnableTensorCorePass assumes that the shape of inputs of" "ConvBias operators whose output dtype is not QuantizedS8 " "can not be changed in this opt pass"); return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape()), "EnableTensorCorePass assumes that filter tensor of " "conv_bias operator can not be changed by other operators"); VarNode* orig_filter = opr->input(1); auto is_nchw4 = [](TensorShape shape) -> bool { return shape.ndim == 5 && shape[4] == 4; }; auto is_nchw32 = [](TensorShape shape) -> bool { return shape.ndim == 5 && shape[4] == 32; }; bool can_replace_nchw32 = false; VarNode *src = nullptr, *weight = nullptr, *bias = nullptr, *z_inp = nullptr; // process src tensor if (is_nchw4(new_inp[0]->shape())) { // new input is NCHW4 layout size_t group = 1, icpg, ocpg; if (conv_bias.param().sparse == Sparse::DENSE) { icpg = orig_filter->shape()[1] * 4; ocpg = orig_filter->shape()[0]; } else { mgb_assert(conv_bias.param().sparse == Sparse::GROUP); group = orig_filter->shape()[0]; icpg = orig_filter->shape()[2]; ocpg = orig_filter->shape()[1]; if (icpg == 1 && ocpg == 1) { // channel wise conv group *= 4; } else { icpg *= 4; } } // nchw32 layout need that input width and height are larger than 3 size_t ih = new_inp[0]->shape()[2], iw = new_inp[0]->shape()[3]; if (group == 1 && ocpg % 32 == 0 && icpg % 32 == 0 && ih >= 3 && iw >= 3) { auto symvar = RelayoutPlaceholder::make( new_inp[0], RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW32); src = symvar.node(); can_replace_nchw32 = true; } else { src = new_inp[0]; } } else { // new input is NCHW32 layout mgb_assert(is_nchw32(new_inp[0]->shape())); size_t group = 1, ocpg; if (conv_bias.param().sparse == Sparse::DENSE) { ocpg = orig_filter->shape()[0]; } else { mgb_assert(conv_bias.param().sparse == Sparse::GROUP); size_t icpg = orig_filter->shape()[2]; ocpg = orig_filter->shape()[1]; if (icpg == 1 && ocpg == 1) { group *= 4; } else { icpg *= 4; } } size_t ih = new_inp[0]->shape()[2], iw = new_inp[0]->shape()[3]; if (group == 1 && ocpg % 32 == 0 && ih >= 3 && iw >= 3) { can_replace_nchw32 = true; src = new_inp[0]; } else { auto symvar = RelayoutPlaceholder::make( new_inp[0], RelayoutPlaceholder::LayoutType::NCHW32_TO_NCHW4); src = symvar.node(); } } // process filter tensor if (can_replace_nchw32) { auto symvar = RelayoutPlaceholder::make( new_inp[1], RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW32); weight = symvar.node(); } else { weight = new_inp[1]; } if (new_inp.size() == 2) { if (can_replace_nchw32) { auto param = conv_bias.param(); param.format = Format::NCHW32; auto new_opr = opr::ConvBiasForward::make( src, weight, param, conv_bias.execution_policy(), conv_bias.config()); return new_opr.node()->owner_opr(); } else { VarNodeArray inps{src, weight}; auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); return new_opr; } } auto process_inp = [&](VarNode* inp) -> VarNode* { if (can_replace_nchw32) { if (is_nchw4(inp->shape())) { auto symvar = RelayoutPlaceholder::make( inp, RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW32); return symvar.node(); } else { mgb_assert(is_nchw32(inp->shape())); return inp; } } else { if (is_nchw4(inp->shape())) { return inp; } else { mgb_assert(is_nchw32(inp->shape())); auto symvar = RelayoutPlaceholder::make( inp, RelayoutPlaceholder::LayoutType::NCHW32_TO_NCHW4); return symvar.node(); } } }; // process bias tensor bias = process_inp(new_inp[2]); if (new_inp.size() == 3) { if (can_replace_nchw32) { auto param = conv_bias.param(); param.format = Format::NCHW32; auto new_opr = opr::ConvBiasForward::make( src, weight, bias, param, conv_bias.execution_policy(), conv_bias.config()); return new_opr.node()->owner_opr(); } else { VarNodeArray inps{src, weight, bias}; auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); return new_opr; } } // process z_inp tensor z_inp = process_inp(new_inp[3]); if (can_replace_nchw32) { auto param = conv_bias.param(); param.format = Format::NCHW32; auto new_opr = opr::ConvBiasForward::make( src, weight, bias, z_inp, param, conv_bias.execution_policy(), conv_bias.config()); return new_opr.node()->owner_opr(); } VarNodeArray inps{src, weight, bias, z_inp}; auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); return new_opr; }; // replace rule for elemwise like opr // for oprs support NCHW4 and NCHW32 layout auto replace_elemwise_like_opr = [](OperatorNodeBase* opr, const VarNodeArray new_inp) { mgb_assert(opr->input().size() == new_inp.size()); size_t nr_inps = new_inp.size(); size_t nr_shape_changed = 0; for (size_t i = 0; i < nr_inps; ++i) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { nr_shape_changed++; } } if (nr_shape_changed) { auto inps = new_inp; if (nr_shape_changed >= nr_inps / 2) { // NCHW32 > NCHW4 -> use NCHW32 for (size_t i = 0; i < nr_inps; ++i) { if (opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType:: NCHW4_TO_NCHW32); inps[i] = symvar.node(); } } } else { // NCHW32 < NCHW4 -> use NCHW4 for (size_t i = 0; i < nr_inps; ++i) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType:: NCHW32_TO_NCHW4); inps[i] = symvar.node(); } } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; // for oprs only supports NCHW4 layout auto replace_inps_to_nchw4 = [](OperatorNodeBase* opr, const VarNodeArray new_inp) { mgb_assert(opr->input().size() == new_inp.size()); VarNodeArray inps = new_inp; for (size_t i = 0; i < opr->input().size(); ++i) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { mgb_assert(opr->input(i)->shape().ndim == 5 && opr->input(i)->shape()[4] == 4); mgb_assert(new_inp[i]->shape().ndim == 5 && new_inp[i]->shape()[4] == 32); auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType::NCHW32_TO_NCHW4); inps[i] = symvar.node(); } } auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); return new_opr; }; auto replace_non_nchw4_opr = [](OperatorNodeBase* opr, const VarNodeArray new_inp) { size_t nr_inps = opr->input().size(); bool shape_has_changed = false; for (size_t i = 0; i < nr_inps; ++i) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { shape_has_changed = true; } } mgb_assert(!shape_has_changed, "EnableTensorCorePass assumes that inputs' shape of " "non-nchw4 operators " "can not be changed in this opt " "pass"); return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; auto replace_warp_affine_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::WarpAffineForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& warp = opr->cast_final_safe(); if (warp.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_warp_perspective_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::WarpPerspectiveForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& warp = opr->cast_final_safe(); if (warp.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_resize_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::ResizeForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& resize = opr->cast_final_safe(); if (resize.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_pooling_opr = [replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::PoolingForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& pooling = opr->cast_final_safe(); if (pooling.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } size_t nr_inps = opr->input().size(); MGB_MARK_USED_VAR(nr_inps); mgb_assert(nr_inps == 1); if (!opr->input(0)->shape().eq_shape(new_inp[0]->shape())) { mgb_assert(opr->input(0)->shape().ndim == 5 && opr->input(0)->shape()[4] == 4); mgb_assert(new_inp[0]->shape().ndim == 5 && new_inp[0]->shape()[4] == 32); auto new_param = pooling.param(); new_param.format = Format::NCHW32; auto new_pooling = opr::PoolingForward::make(new_inp[0], new_param, opr->config()); return new_pooling.node()->owner_opr(); } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; auto ret = std::make_unique(); ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); auto&& replace_func = ret->m_opr_replace_func; replace_func[opr::ConvBiasForward::typeinfo()] = replace_conv_bias_opr; // elemwise like replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::PowC::typeinfo()] = replace_elemwise_like_opr; // format aware replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; replace_func[opr::WarpAffineForward::typeinfo()] = replace_warp_affine_opr; replace_func[opr::WarpPerspectiveForward::typeinfo()] = replace_warp_perspective_opr; replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr; // to nchw4 replace_func[opr::Reduce::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Concat::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Reshape::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; return ret; } /* ================ EnableCHWN4Pass =============== */ VarNode* EnableCHWN4Pass::on_graph_endpoint_var(VarNode* new_var, VarNode* /* orig_var */) const { if (m_varshape_changed.count(new_var)) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::CHWN4_TO_NCHW4) .node(); } return new_var; } std::unique_ptr EnableCHWN4Pass::make_chwn4_converter() { auto ret = std::make_unique(); ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); auto&& replace_func = ret->m_opr_replace_func; auto&& varshape_changed = ret->m_varshape_changed; // replace rule for conv bias opr auto replace_conv_bias_opr = [&varshape_changed]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { using Param = megdnn::param::ConvBias; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& conv_bias = opr->cast_final_safe(); if (conv_bias.param().format != Format::NCHW4 || conv_bias.output(0)->dtype().enumv() != DTypeEnum::QuantizedS8) { size_t nr_inps = new_inp.size(); bool shape_has_changed = false; for (size_t i = 0; i < nr_inps; ++i) { if (varshape_changed.count(new_inp[i])) { shape_has_changed = true; break; } } mgb_assert( !shape_has_changed, "EnableCHWN4Pass assumes that the shape of inputs of" "ConvBias operators whose output dtype is not QuantizedS8 " "can not be changed in this opt pass"); return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } mgb_assert(varshape_changed.count(new_inp[1]) == 0, "EnableCHWN4Pass assumes that filter tensor of " "conv_bias operator can not be changed by other operators"); VarNode *src = nullptr, *weight = nullptr, *bias = nullptr, *z_inp = nullptr; // process src tensor if (varshape_changed.count(new_inp[0]) == 0) { // new input is NCHW4 layout // currently not support group conv auto symvar = RelayoutPlaceholder::make( new_inp[0], RelayoutPlaceholder::LayoutType::NCHW4_TO_CHWN4); src = symvar.node(); } else { // new input is NCHW32 layout src = new_inp[0]; } // process weight tensor { auto symvar = RelayoutPlaceholder::make( new_inp[1], RelayoutPlaceholder::LayoutType::NCHW4_TO_CHWN4); weight = symvar.node(); } if (new_inp.size() == 2) { auto param = conv_bias.param(); param.format = Format::CHWN4; auto new_opr = opr::ConvBiasForward::make( src, weight, param, conv_bias.execution_policy(), conv_bias.config()); varshape_changed.insert(new_opr.node()); return new_opr.node()->owner_opr(); } auto process_inp = [&](VarNode* inp) -> VarNode* { if (varshape_changed.count(inp) == 0) { auto symvar = RelayoutPlaceholder::make( inp, RelayoutPlaceholder::LayoutType::NCHW4_TO_CHWN4); return symvar.node(); } else { return inp; } }; // process bias tensor bias = process_inp(new_inp[2]); if (new_inp.size() == 3) { auto param = conv_bias.param(); param.format = Format::CHWN4; auto new_opr = opr::ConvBiasForward::make( src, weight, bias, param, conv_bias.execution_policy(), conv_bias.config()); varshape_changed.insert(new_opr.node()); return new_opr.node()->owner_opr(); } // process z_inp tensor z_inp = process_inp(new_inp[3]); auto param = conv_bias.param(); param.format = Format::CHWN4; auto new_opr = opr::ConvBiasForward::make( src, weight, bias, z_inp, param, conv_bias.execution_policy(), conv_bias.config()); varshape_changed.insert(new_opr.node()); return new_opr.node()->owner_opr(); }; // replace rule for elemwise like opr // for oprs support NCHW4 and CHWN4 layout auto replace_elemwise_like_opr = [&varshape_changed]( OperatorNodeBase* opr, const VarNodeArray new_inp) { mgb_assert(opr->input().size() == new_inp.size()); size_t nr_inps = new_inp.size(); size_t nr_shape_changed = 0; for (size_t i = 0; i < nr_inps; ++i) { if (varshape_changed.count(new_inp[i])) { nr_shape_changed++; } } if (nr_shape_changed) { auto inps = new_inp; if (nr_shape_changed >= nr_inps / 2) { // CHWN4 > NCHW4 -> use CHWN4 for (size_t i = 0; i < nr_inps; ++i) { if (varshape_changed.count(new_inp[i]) == 0) { auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType:: NCHW4_TO_CHWN4); inps[i] = symvar.node(); } } auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); varshape_changed.insert(new_opr->output(0)); return new_opr; } else { // CHWN4 < NCHW4 -> use NCHW4 for (size_t i = 0; i < nr_inps; ++i) { if (varshape_changed.count(new_inp[i])) { auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType:: CHWN4_TO_NCHW4); inps[i] = symvar.node(); } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); } } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; // for oprs only supports NCHW4 layout auto replace_inps_to_nchw4 = [&varshape_changed]( OperatorNodeBase* opr, const VarNodeArray new_inp) { mgb_assert(opr->input().size() == new_inp.size()); VarNodeArray inps = new_inp; for (size_t i = 0; i < opr->input().size(); ++i) { if (varshape_changed.count(new_inp[i])) { auto symvar = RelayoutPlaceholder::make( new_inp[i], RelayoutPlaceholder::LayoutType::CHWN4_TO_NCHW4); inps[i] = symvar.node(); } } auto new_opr = serialization::copy_opr_shallow(*opr, inps, opr->config()); return new_opr; }; auto replace_non_nchw4_opr = [&varshape_changed]( OperatorNodeBase* opr, const VarNodeArray new_inp) { size_t nr_inps = opr->input().size(); bool shape_has_changed = false; for (size_t i = 0; i < nr_inps; ++i) { if (varshape_changed.count(new_inp[i])) { shape_has_changed = true; } } mgb_assert(!shape_has_changed, "EnableCHWN4Pass assumes that inputs' shape of " "non-nchw4 operators " "can not be changed in this opt " "pass"); return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; // capture by copy to avoid use after return auto replace_warp_affine_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::WarpAffineForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& warp = opr->cast_final_safe(); if (warp.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_warp_perspective_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::WarpPerspectiveForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& warp = opr->cast_final_safe(); if (warp.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_resize_opr = [replace_inps_to_nchw4, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::ResizeForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& resize = opr->cast_final_safe(); if (resize.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } return replace_inps_to_nchw4(opr, new_inp); }; auto replace_pooling_opr = [&varshape_changed, replace_non_nchw4_opr]( OperatorNodeBase* opr, const VarNodeArray new_inp) { using Param = opr::PoolingForward::Param; using Format = Param::Format; mgb_assert(opr->input().size() == new_inp.size()); auto& pooling = opr->cast_final_safe(); if (pooling.param().format != Format::NCHW4) { return replace_non_nchw4_opr(opr, new_inp); } size_t nr_inps = opr->input().size(); MGB_MARK_USED_VAR(nr_inps); mgb_assert(nr_inps == 1); if (varshape_changed.count(new_inp[0])) { auto new_param = pooling.param(); new_param.format = Format::CHWN4; auto new_pooling = opr::PoolingForward::make(new_inp[0], new_param, opr->config()); varshape_changed.insert(new_pooling.node()); return new_pooling.node()->owner_opr(); } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; replace_func[opr::ConvBiasForward::typeinfo()] = replace_conv_bias_opr; // elemwise like replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_like_opr; replace_func[opr::PowC::typeinfo()] = replace_elemwise_like_opr; // format aware replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; replace_func[opr::WarpAffineForward::typeinfo()] = replace_warp_affine_opr; replace_func[opr::WarpPerspectiveForward::typeinfo()] = replace_warp_perspective_opr; replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr; // to nchw4 replace_func[opr::Reduce::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Concat::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Reshape::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; replace_func[opr::BatchConvBias::typeinfo()] = replace_inps_to_nchw4; return ret; } /* ================ EnableNCHW4Pass ================ */ VarNode* EnableNCHW4Pass::on_graph_endpoint_var(VarNode* new_var, VarNode* orig_var) const { if (!orig_var->shape().eq_shape(new_var->shape())) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW) .node(); } return new_var; } std::unique_ptr EnableNCHW4Pass::make_nchw4_converter(){ auto ret = std::make_unique(); ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); using RelayoutMode = RelayoutPlaceholder::LayoutType; megdnn::param::Convolution::Format conv_format = megdnn::param::Convolution::Format::NCHW4; megdnn::param::ConvBias::Format conv_bias_format = megdnn::param::ConvBias::Format::NCHW4; megdnn::param::BatchConvBias::Format batch_conv_bias_format = megdnn::param::BatchConvBias::Format::NCHW4; RelayoutMode src_to_nchw4_mode = RelayoutMode::NCHW_TO_NCHW4; RelayoutMode src_to_nchw_mode = RelayoutMode::NCHW4_TO_NCHW; RelayoutMode weight_to_nchw4_mode_dense = RelayoutMode::WEIGHT_NCHW_TO_NCHW4_DENSE; RelayoutMode weight_to_nchw4_mode_group = RelayoutMode::WEIGHT_NCHW_TO_NCHW4_GROUP; auto trans_nchw4 = [weight_to_nchw4_mode_dense, weight_to_nchw4_mode_group]( const megdnn::param::Convolution::Sparse conv_mode, const VarNode* filter) -> RelayoutMode { if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) { mgb_assert(filter->shape().ndim == 4, "The origin filter is not NCHW mode"); size_t IC = filter->shape()[1]; mgb_assert(IC % 4 == 0, "The input channel should be divisible by 4"); return weight_to_nchw4_mode_dense; } else { mgb_assert(conv_mode == megdnn::param::Convolution::Sparse::GROUP); mgb_assert(filter->shape().ndim == 5, "The origin filter if not NCHW mode"); size_t IC = filter->shape()[2]; mgb_assert(IC % 4 == 0, "The input channel should be divisible by 4"); return weight_to_nchw4_mode_group; } }; auto replace_conv_opr = [trans_nchw4, conv_format, src_to_nchw4_mode]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_opr = opr->cast_final_safe(); mgb_assert(conv_opr.param().format == megdnn::param::Convolution::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHW4"); VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1]; // src: NCHW --> NCWH4 if (new_inp[0]->shape().ndim != 5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchw4_mode); conv_src = new_src.node(); } // weight: NCHW --> NCHW4 auto weight_mode = trans_nchw4(conv_opr.param().sparse, new_inp[1]); auto new_filter = RelayoutPlaceholder::make(new_inp[1], weight_mode); conv_filter = new_filter.node(); // format: NCHW --> NCHW4 auto new_param = conv_opr.param(); new_param.format = conv_format; // dst auto new_conv_opr = opr::Convolution::make( conv_src, conv_filter, new_param, conv_opr.execution_policy(), conv_opr.config()); OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr(); mgb_assert(new_conv_opr.shape().ndim == 5, "The conv dst dim is not trans to nchw4"); return new_opr; }; auto replace_batch_conv_bias_opr = [batch_conv_bias_format, src_to_nchw4_mode]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& batch_conv_bias_opr = opr->cast_final_safe(); mgb_assert(batch_conv_bias_opr.param().format == megdnn::param::BatchConvBias::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHW4"); // what should be converted: src, weight VarNode *src = new_inp[0], *filter = new_inp[1]; // src: NCHW --> NCHW4 if (new_inp[0]->shape().ndim !=5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchw4_mode); src = new_src.node(); } // weight: BNCHW --> BNCHW4 // only support dense mode, which is similar with conv->group. auto weight_mode = RelayoutPlaceholder::LayoutType::WEIGHT_NCHW_TO_NCHW4_GROUP; auto new_filter = RelayoutPlaceholder::make(new_inp[1], weight_mode); filter = new_filter.node(); // format: NCHW --> NCHW4 auto new_param = batch_conv_bias_opr.param(); new_param.format = batch_conv_bias_format; if (new_inp.size() == 2) { auto dst = opr::BatchConvBias::make(src, filter, new_param, batch_conv_bias_opr.execution_policy(), batch_conv_bias_opr.config()); OperatorNodeBase* new_opr = dst.node()->owner_opr(); mgb_assert(dst.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; } // bias: NCHW --> NCHW4 VarNode* bias = new_inp[2]; if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make(new_inp[2], src_to_nchw4_mode); bias = new_bias.node(); } if (new_inp.size() == 3) { auto dst = opr::BatchConvBias::make(src, filter, bias, new_param, batch_conv_bias_opr.execution_policy(), batch_conv_bias_opr.config()); OperatorNodeBase* new_opr = dst.node()->owner_opr(); mgb_assert(dst.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; } // z_inp: NCHW --> NCHW4 VarNode* z_inp = new_inp[3]; if (new_inp[3]->shape().ndim == 4) { auto new_z = RelayoutPlaceholder::make(new_inp[3], src_to_nchw4_mode); z_inp = new_z.node(); } auto dst = opr::BatchConvBias::make(src, filter, bias, z_inp, new_param,batch_conv_bias_opr.execution_policy(), batch_conv_bias_opr.config()); OperatorNodeBase* new_opr = dst.node()->owner_opr(); mgb_assert(dst.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; }; auto replace_conv_bias_opr = [trans_nchw4, conv_bias_format, src_to_nchw4_mode]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_bias_opr = opr->cast_final_safe(); mgb_assert(conv_bias_opr.param().format == megdnn::param::ConvBias::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHW4"); // what should be converted: src, weight VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1]; // src: NCHW --> NCHW4 if (new_inp[0]->shape().ndim !=5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchw4_mode); conv_bias_src = new_src.node(); } // weight: NCHW --> NCHW4 or GNCHW --> GNCHW4 auto weight_mode = trans_nchw4(conv_bias_opr.param().sparse, new_inp[1]); auto new_filter = RelayoutPlaceholder::make(new_inp[1], weight_mode); conv_bias_filter = new_filter.node(); // format: NCHW --> NCHW4 auto new_param = conv_bias_opr.param(); new_param.format = conv_bias_format; if (new_inp.size() == 2) { auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; } // bias: NCHW --> NCHW4 VarNode* conv_bias_bias = new_inp[2]; if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make(new_inp[2], src_to_nchw4_mode); conv_bias_bias = new_bias.node(); } if (new_inp.size() == 3) { auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; } // z_inp: NCHW --> NCHW4 VarNode* z_inp = new_inp[3]; if (new_inp[3]->shape().ndim == 4) { auto new_z = RelayoutPlaceholder::make(new_inp[3], src_to_nchw4_mode); z_inp = new_z.node(); } auto new_conv_bias_opr = opr::ConvBias::make(conv_bias_src, conv_bias_filter, conv_bias_bias, z_inp, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv_bias dst dim is not trans to nchw4"); return new_opr; }; auto replace_elemwise_opr = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); bool has_inp_changed = false; for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 5) { has_inp_changed = true; break; } } if (has_inp_changed) { auto temp_inp = new_inp; for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 4) { auto new_var = RelayoutPlaceholder::make( new_inp[i], src_to_nchw4_mode); temp_inp[i] = new_var.node(); } else { mgb_assert((new_inp[i]->shape().ndim == 5) || new_inp[i]->shape().is_scalar()); } } return serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); } else { return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } }; auto relayout_inp_to_nchw = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); VarNodeArray temp_inp = new_inp; for (size_t i = 0; i < opr->input().size(); i++) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { mgb_assert(opr->input(i)->shape().ndim == 4); mgb_assert(new_inp[i]->shape().ndim == 5); auto new_var = RelayoutPlaceholder::make(new_inp[i], src_to_nchw_mode); temp_inp[i] = new_var.node(); } } return serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); }; auto&& replace_func = ret->m_opr_replace_func; //! supportted nchw4 replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; replace_func[opr::BatchConvBias::typeinfo()] = replace_batch_conv_bias_opr; replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_opr; replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_opr; replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_opr; replace_func[opr::PowC::typeinfo()] = replace_elemwise_opr; //! not supported nchw4 replace_func[opr::PoolingForward::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Concat::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::ConvolutionBackwardData::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Subtensor::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::ResizeForward::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::WarpPerspectiveForward::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw; return ret; } /* ================ EnableNchwxxPass =============== */ VarNode* EnableNchwxxPass::on_graph_endpoint_var(VarNode* new_var, VarNode* orig_var) const { if (!orig_var->shape().eq_shape(new_var->shape())) { if (m_pack_c_size == 8) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::NCHW88_TO_NCHW) .node(); } else if (m_pack_c_size == 4) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW) .node(); } } return new_var; } void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size){ using RelayoutMode = RelayoutPlaceholder::LayoutType; using TestFilterResult = std::pair; RelayoutMode weight_to_nchwxx_mode_dense = RelayoutMode::WEIGHT_NCHW_TO_NCHW88_DENSE; RelayoutMode weight_to_nchwxx_mode_group = RelayoutMode::WEIGHT_NCHW_TO_NCHW88_GROUP; RelayoutMode weight_to_nchwxx_mode_chan = RelayoutMode::WEIGHT_NCHW_TO_NCHW88_CHAN; RelayoutMode hybrid_nchw_nchwxx = RelayoutMode::WEIGHT_HYBIRD_NCHW_NCHW88; RelayoutMode src_to_nchwxx_mode = RelayoutMode::NCHW_TO_NCHW88; RelayoutMode src_to_nchw_mode = RelayoutMode::NCHW88_TO_NCHW; megdnn::param::ConvBias::Format conv_bias_format = megdnn::param::ConvBias::Format::NCHW88; megdnn::param::Convolution::Format conv_format = megdnn::param::ConvolutionV0::Format::NCHW88; megdnn::param::Pooling::Format pooling_format = megdnn::param::Pooling::Format::NCHW88; std::string convter_pass_name = "conv_format_nchw88"; if (pack_c_size == 4) { weight_to_nchwxx_mode_dense = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_DENSE; weight_to_nchwxx_mode_group = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_GROUP; weight_to_nchwxx_mode_chan = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_CHAN; hybrid_nchw_nchwxx = RelayoutMode::WEIGHT_HYBIRD_NCHW_NCHW44; src_to_nchwxx_mode = RelayoutMode::NCHW_TO_NCHW4; src_to_nchw_mode = RelayoutMode::NCHW4_TO_NCHW; conv_bias_format = megdnn::param::ConvBias::Format::NCHW44; conv_format = megdnn::param::ConvolutionV0::Format::NCHW44; pooling_format = megdnn::param::Pooling::Format::NCHW44; convter_pass_name = "conv_format_nchw44"; } auto test_trans_nchwxx = [pack_c_size, weight_to_nchwxx_mode_dense, weight_to_nchwxx_mode_group, weight_to_nchwxx_mode_chan, hybrid_nchw_nchwxx]( const megdnn::param::Convolution::Sparse conv_mode, const VarNode* filter) -> TestFilterResult { TestFilterResult ret{TransType::TRANS_NONE, {}}; if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) { size_t IC = filter->shape()[1]; size_t OC = filter->shape()[0]; if ((IC % pack_c_size == 0) && (OC % pack_c_size == 0)) { ret.first = TransType::TRANS_PURE_NCHWXX; ret.second = weight_to_nchwxx_mode_dense; } else if (IC < pack_c_size && OC % pack_c_size == 0) { ret.first = TransType::TRANS_HYBIRD_NCHWXX; ret.second = hybrid_nchw_nchwxx; } } else { mgb_assert(conv_mode == megdnn::param::Convolution::Sparse::GROUP); size_t group = filter->shape()[0]; size_t ocpg = filter->shape()[1]; size_t icpg = filter->shape()[2]; if (icpg == 1 && ocpg == 1 && (group % pack_c_size == 0)) { ret.first = TransType::TRANS_PURE_NCHWXX; ret.second = weight_to_nchwxx_mode_chan; } else if ((icpg % pack_c_size == 0) && (ocpg % pack_c_size == 0)) { ret.first = TransType::TRANS_PURE_NCHWXX; ret.second = weight_to_nchwxx_mode_group; } } return ret; }; auto replace_conv_opr = [test_trans_nchwxx, conv_format, src_to_nchwxx_mode, src_to_nchw_mode](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_opr = opr->cast_final_safe(); mgb_assert(conv_opr.param().format == megdnn::param::Convolution::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHWXX"); auto is_trans = test_trans_nchwxx(conv_opr.param().sparse, new_inp[1]); //! can not trans to nchwxx if (is_trans.first == TransType::TRANS_NONE) { mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNodeArray temp_inp = new_inp; //! if src is nchwxx, should RelayoutPlaceholder to nchw if (temp_inp[0]->shape().ndim == 5) { auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchw_mode); temp_inp[0] = new_src.node(); } auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); return new_opr; } else if (is_trans.first == TransType::TRANS_PURE_NCHWXX) { //! filter trans to nchwxx mode mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.second); conv_filter = new_filter.node(); //! src trans to nchwxx mode if (new_inp[0]->shape().ndim != 5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchwxx_mode); conv_src = new_src.node(); } auto new_param = conv_opr.param(); new_param.format = conv_format; mgb_assert(conv_src->shape().ndim == 5 && conv_filter->shape().ndim >= 6, "The conv src dim is not trans to nchwxx"); auto new_conv_opr = opr::Convolution::make( conv_src, conv_filter, new_param, conv_opr.execution_policy(), conv_opr.config()); OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr(); mgb_assert(new_conv_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } else { mgb_assert(is_trans.first == TransType::TRANS_HYBIRD_NCHWXX); VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.second); conv_filter = new_filter.node(); mgb_assert(conv_src->shape().ndim == 4 && conv_filter->shape().ndim == 5, "The src and filter is OK"); auto new_param = conv_opr.param(); new_param.format = conv_format; auto new_conv_opr = opr::Convolution::make( conv_src, conv_filter, new_param, conv_opr.execution_policy(), conv_opr.config()); OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr(); mgb_assert(new_conv_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } }; auto replace_conv_bias_opr = [test_trans_nchwxx, conv_bias_format, src_to_nchwxx_mode, src_to_nchw_mode]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_bias_opr = opr->cast_final_safe(); mgb_assert(conv_bias_opr.param().format == megdnn::param::ConvBias::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHWXX"); auto is_trans = test_trans_nchwxx(conv_bias_opr.param().sparse, new_inp[1]); //! can not trans to nchwxx if (is_trans.first == TransType::TRANS_NONE) { mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNodeArray temp_inp = new_inp; //! if src is nchwxx, should RelayoutPlaceholder to nchw if (temp_inp[0]->shape().ndim == 5) { auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchw_mode); temp_inp[0] = new_src.node(); } //! the bias is nchwxx if (temp_inp[2]->shape().ndim == 5) { auto new_bias = RelayoutPlaceholder::make(new_inp[2], src_to_nchw_mode); temp_inp[2] = new_bias.node(); } auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); return new_opr; } else if (is_trans.first == TransType::TRANS_PURE_NCHWXX) { VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1], *conv_bias_bias = new_inp[2]; //! filter trans to nchwxx mode mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.second); conv_bias_filter = new_filter.node(); //! src trans to nchwxx mode if (new_inp[0]->shape().ndim != 5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make(new_inp[0], src_to_nchwxx_mode); conv_bias_src = new_src.node(); } //! bias trans to nchwxx mode, bias may be scale if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make(new_inp[2], src_to_nchwxx_mode); conv_bias_bias = new_bias.node(); } auto new_param = conv_bias_opr.param(); new_param.format = conv_bias_format; mgb_assert(conv_bias_src->shape().ndim == 5 && conv_bias_filter->shape().ndim >= 6, "The conv_bias src dim is not trans to nchwxx"); auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv_bias dst dim is not trans to nchwxx"); return new_opr; } else { mgb_assert(is_trans.first == TransType::TRANS_HYBIRD_NCHWXX); VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1], *conv_bias_bias = new_inp[2]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.second); conv_bias_filter = new_filter.node(); //! bias trans to nchwxx mode, bias may be scale if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make(new_inp[2], src_to_nchwxx_mode); conv_bias_bias = new_bias.node(); } mgb_assert(conv_bias_src->shape().ndim == 4 && conv_bias_filter->shape().ndim == 5); mgb_assert((conv_bias_bias->shape().ndim == 5) || conv_bias_bias->shape().is_scalar()); auto new_param = conv_bias_opr.param(); new_param.format = conv_bias_format; auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } }; auto replace_pooling_opr = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& pooling_opr = opr->cast_final_safe(); mgb_assert(pooling_opr.param().format == megdnn::param::Pooling::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHWxx"); VarNode* inp = new_inp[0]; //! if input is nchwxx if (inp->shape().ndim == 5) { auto new_param = pooling_opr.param(); new_param.format = pooling_format; auto new_pooling_opr = opr::PoolingForward::make(inp, new_param, opr->config()); mgb_assert(new_pooling_opr.shape().ndim == 5, "The pooling dst dim is not trans to nchwxx"); return new_pooling_opr.node()->owner_opr(); } else { auto new_opr = serialization::copy_opr_shallow(*opr, new_inp, opr->config()); return new_opr; } }; auto replace_concat_opr = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); bool has_inp_changed = false; bool can_exec_ncwxx = true; for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 5) { has_inp_changed = true; break; } else if (new_inp[i]->shape().ndim == 4) { if (new_inp[i]->shape()[1] % pack_c_size != 0) { can_exec_ncwxx = false; } } } if (has_inp_changed) { auto temp_inp = new_inp; if (can_exec_ncwxx) { for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 4) { auto new_var = RelayoutPlaceholder::make( new_inp[i], src_to_nchwxx_mode); temp_inp[i] = new_var.node(); } else { mgb_assert((new_inp[i]->shape().ndim == 5) || new_inp[i]->shape().is_scalar()); } } } else { for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 5) { auto new_var = RelayoutPlaceholder::make( new_inp[i], src_to_nchw_mode); temp_inp[i] = new_var.node(); } } } return serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); } else { return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } }; auto replace_elemwise_opr = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); bool has_inp_changed = false; for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 5) { has_inp_changed = true; break; } } if (has_inp_changed) { auto temp_inp = new_inp; for (size_t i = 0; i < opr->input().size(); i++) { if (new_inp[i]->shape().ndim == 4) { auto new_var = RelayoutPlaceholder::make( new_inp[i], src_to_nchwxx_mode); temp_inp[i] = new_var.node(); } else { mgb_assert((new_inp[i]->shape().ndim == 5) || new_inp[i]->shape().is_scalar()); } } return serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); } else { return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } }; auto relayout_inp_to_nchw = [=](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); VarNodeArray temp_inp = new_inp; for (size_t i = 0; i < opr->input().size(); i++) { if (!opr->input(i)->shape().eq_shape(new_inp[i]->shape())) { mgb_assert(opr->input(i)->shape().ndim == 4); mgb_assert(new_inp[i]->shape().ndim == 5); auto new_var = RelayoutPlaceholder::make(new_inp[i], src_to_nchw_mode); temp_inp[i] = new_var.node(); } } return serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); }; auto&& replace_func = m_opr_replace_func; //! supportted nchwxx replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; replace_func[opr::Concat::typeinfo()] = replace_concat_opr; replace_func[opr::Elemwise::typeinfo()] = replace_elemwise_opr; replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_opr; replace_func[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_opr; replace_func[opr::PowC::typeinfo()] = replace_elemwise_opr; //! not support yet replace_func[opr::ConvolutionBackwardData::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Subtensor::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::ResizeForward::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::WarpPerspectiveForward::typeinfo()] = relayout_inp_to_nchw; replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw; } std::unique_ptr EnableNchwxxPass::make_nchwxx_converter( size_t pack_c_size) { auto ret = std::make_unique(pack_c_size); ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); std::string convter_pass_name = "conv_format_nchw88"; if (pack_c_size == 4) { convter_pass_name = "conv_format_nchw44"; } ret->fill_opr_convert_fun(pack_c_size); ret->set_name(convter_pass_name); return ret; } /* ================ EnableNchw44DotPass =============== */ VarNode* EnableNchw44DotPass::on_graph_endpoint_var(VarNode* new_var, VarNode* orig_var) const { if (!orig_var->shape().eq_shape(new_var->shape())) { return RelayoutPlaceholder::make( new_var, RelayoutPlaceholder::LayoutType::NCHW4_TO_NCHW) .node(); } return new_var; } std::unique_ptr EnableNchw44DotPass::make_nchw44_dot_converter() { auto ret = std::make_unique(); ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); //! First is whether the conv can trans to nchwxx, second is the filter //! trans mode using RelayoutMode = RelayoutPlaceholder::LayoutType; struct TestTransResult { TransType trans_type; RelayoutMode relayout_mod; megdnn::param::ConvolutionV0::Format conv_format; }; constexpr size_t pack_c_size = 4_z; auto test_trans_nchw44_dot = [](const megdnn::param::Convolution::Sparse conv_mode, const VarNode* filter) -> TestTransResult { TestTransResult ret{TransType::TRANS_NONE, {}, {}}; if (conv_mode == megdnn::param::Convolution::Sparse::DENSE) { size_t IC = filter->shape()[1]; size_t OC = filter->shape()[0]; if ((IC % pack_c_size == 0) && (OC % pack_c_size == 0)) { ret.trans_type = TransType::TRANS_PURE_NCHWXX; ret.relayout_mod = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_DOT_DENSE; ret.conv_format = megdnn::param::ConvBias::Format::NCHW44_DOT; } else if (IC < pack_c_size && OC % pack_c_size == 0) { ret.trans_type = TransType::TRANS_HYBIRD_NCHWXX; ret.relayout_mod = RelayoutMode::WEIGHT_HYBIRD_NCHW_NCHW44; ret.conv_format = megdnn::param::ConvBias::Format::NCHW44_DOT; } } else { mgb_assert(conv_mode == megdnn::param::Convolution::Sparse::GROUP); size_t group = filter->shape()[0]; size_t ocpg = filter->shape()[1]; size_t icpg = filter->shape()[2]; if (icpg == 1 && ocpg == 1 && (group % pack_c_size == 0)) { ret.trans_type = TransType::TRANS_PURE_NCHWXX; ret.relayout_mod = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_CHAN; ret.conv_format = megdnn::param::ConvBias::Format::NCHW44; } else if ((icpg % pack_c_size == 0) && (ocpg % pack_c_size == 0)) { ret.trans_type = TransType::TRANS_PURE_NCHWXX; ret.relayout_mod = RelayoutMode::WEIGHT_NCHW_TO_NCHW44_DOT_GROUP; ret.conv_format = megdnn::param::ConvBias::Format::NCHW44_DOT; } } return ret; }; auto replace_conv_opr = [test_trans_nchw44_dot]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_opr = opr->cast_final_safe(); mgb_assert(conv_opr.param().format == megdnn::param::Convolution::Format::NCHW, "ConvertFormat Pass only support converting NCHW to " "NCHW44_DOT"); auto is_trans = test_trans_nchw44_dot(conv_opr.param().sparse, new_inp[1]); //! can not trans to nchwxx if (is_trans.trans_type == TransType::TRANS_NONE) { mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNodeArray temp_inp = new_inp; //! if src is nchwxx, should RelayoutPlaceholder to nchw if (temp_inp[0]->shape().ndim == 5) { auto new_src = RelayoutPlaceholder::make( new_inp[0], RelayoutMode::NCHW4_TO_NCHW); temp_inp[0] = new_src.node(); } auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); return new_opr; } else if (is_trans.trans_type == TransType::TRANS_PURE_NCHWXX) { //! filter trans to nchwxx mode mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.relayout_mod); conv_filter = new_filter.node(); //! src trans to nchwxx mode if (new_inp[0]->shape().ndim != 5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make( new_inp[0], RelayoutMode::NCHW_TO_NCHW4); conv_src = new_src.node(); } auto new_param = conv_opr.param(); new_param.format = is_trans.conv_format; mgb_assert(conv_src->shape().ndim == 5 && conv_filter->shape().ndim >= 6, "The conv src dim is not trans to nchwxx"); auto new_conv_opr = opr::Convolution::make( conv_src, conv_filter, new_param, conv_opr.execution_policy(), conv_opr.config()); OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr(); mgb_assert(new_conv_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } else { mgb_assert(is_trans.trans_type == TransType::TRANS_HYBIRD_NCHWXX); VarNode *conv_src = new_inp[0], *conv_filter = new_inp[1]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.relayout_mod); conv_filter = new_filter.node(); mgb_assert(conv_src->shape().ndim == 4 && conv_filter->shape().ndim == 5, "The src and filter is OK"); auto new_param = conv_opr.param(); new_param.format = is_trans.conv_format; auto new_conv_opr = opr::Convolution::make( conv_src, conv_filter, new_param, conv_opr.execution_policy(), conv_opr.config()); OperatorNodeBase* new_opr = new_conv_opr.node()->owner_opr(); mgb_assert(new_conv_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } }; auto replace_conv_bias_opr = [test_trans_nchw44_dot]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto& conv_bias_opr = opr->cast_final_safe(); mgb_assert(conv_bias_opr.param().format == megdnn::param::ConvBias::Format::NCHW, "ConvertFormat Pass only support converting NCHW to NCHWXX"); auto is_trans = test_trans_nchw44_dot(conv_bias_opr.param().sparse, new_inp[1]); //! can not trans to nchwxx if (is_trans.trans_type == TransType::TRANS_NONE) { mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); VarNodeArray temp_inp = new_inp; //! if src is nchwxx, should RelayoutPlaceholder to nchw if (temp_inp[0]->shape().ndim == 5) { auto new_src = RelayoutPlaceholder::make( new_inp[0], RelayoutMode::NCHW4_TO_NCHW); temp_inp[0] = new_src.node(); } //! the bias is nchwxx if (temp_inp[2]->shape().ndim == 5) { auto new_bias = RelayoutPlaceholder::make( new_inp[2], RelayoutMode::NCHW4_TO_NCHW); temp_inp[2] = new_bias.node(); } auto new_opr = serialization::copy_opr_shallow(*opr, temp_inp, opr->config()); return new_opr; } else if (is_trans.trans_type == TransType::TRANS_PURE_NCHWXX) { VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1], *conv_bias_bias = new_inp[2]; //! filter trans to nchwxx mode mgb_assert(new_inp[1]->shape().ndim == 4 || new_inp[1]->shape().ndim == 5, "The origin filter is not NCHW mode"); auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.relayout_mod); conv_bias_filter = new_filter.node(); //! src trans to nchwxx mode if (new_inp[0]->shape().ndim != 5) { mgb_assert(new_inp[0]->shape().ndim == 4); auto new_src = RelayoutPlaceholder::make( new_inp[0], RelayoutMode::NCHW_TO_NCHW4); conv_bias_src = new_src.node(); } //! bias trans to nchwxx mode, bias may be scale if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make( new_inp[2], RelayoutMode::NCHW_TO_NCHW4); conv_bias_bias = new_bias.node(); } auto new_param = conv_bias_opr.param(); new_param.format = is_trans.conv_format; mgb_assert(conv_bias_src->shape().ndim == 5 && conv_bias_filter->shape().ndim >= 6, "The conv_bias src dim is not trans to nchwxx"); auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv_bias dst dim is not trans to nchwxx"); return new_opr; } else { mgb_assert(is_trans.trans_type == TransType::TRANS_HYBIRD_NCHWXX); VarNode *conv_bias_src = new_inp[0], *conv_bias_filter = new_inp[1], *conv_bias_bias = new_inp[2]; auto new_filter = RelayoutPlaceholder::make(new_inp[1], is_trans.relayout_mod); conv_bias_filter = new_filter.node(); //! bias trans to nchwxx mode, bias may be scale if (new_inp[2]->shape().ndim == 4) { auto new_bias = RelayoutPlaceholder::make( new_inp[2], RelayoutMode::NCHW_TO_NCHW4); conv_bias_bias = new_bias.node(); } mgb_assert(conv_bias_src->shape().ndim == 4 && conv_bias_filter->shape().ndim == 5); mgb_assert((conv_bias_bias->shape().ndim == 5) || conv_bias_bias->shape().is_scalar()); auto new_param = conv_bias_opr.param(); new_param.format = is_trans.conv_format; auto new_conv_bias_opr = opr::ConvBias::make( conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, conv_bias_opr.execution_policy(), conv_bias_opr.config()); OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); mgb_assert(new_conv_bias_opr.shape().ndim == 5, "The conv dst dim is not trans to nchwxx"); return new_opr; } }; ret->fill_opr_convert_fun(4); auto&& replace_func = ret->m_opr_replace_func; //! supportted nchwxx replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; return ret; } /* ==================== ShuffleShuffleRemovePass ================= */ class ShuffleShuffleRemovePass::Impl { using TensorFormat = opr::ConvBias::Param::Format; OptState& m_opt_state; ThinHashMap, thin_function> m_reformat; class AbstractShuffleOpr; void detect_shuffle_operations(); void do_replace(); public: Impl(OptState& opt_state) : m_opt_state{opt_state} { m_reformat[std::make_pair(TensorFormat::NCHW, TensorFormat::NCHW4)] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make( {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); auto y0 = opr::Reshape::make(x, tshp); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2}); return y1.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW, TensorFormat::NCHW32)] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make( {sub(0), sub(1) / 32, cv(32), sub(2), sub(3)}, 0); auto y0 = opr::Reshape::make(x, tshp); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2}); return y1.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW4, TensorFormat::NCHW)] = [](VarNode* inp) -> VarNode* { mgb_assert(inp->shape().ndim == 5 && inp->shape()[4] == 4); auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0); auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3}); auto y1 = opr::Reshape::make(y0, tshp); return y1.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW32, TensorFormat::NCHW)] = [](VarNode* inp) -> VarNode* { mgb_assert(inp->shape().ndim == 5 && inp->shape()[4] == 32); auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) * 32, sub(2), sub(3)}, 0); auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3}); auto y1 = opr::Reshape::make(y0, tshp); return y1.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW4, TensorFormat::NCHW32)] = [](VarNode* inp) -> VarNode* { mgb_assert(inp->shape().ndim == 5 && inp->shape()[4] == 4); auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW32, TensorFormat::NCHW4)] = [](VarNode* inp) -> VarNode* { mgb_assert(inp->shape().ndim == 5 && inp->shape()[4] == 32); auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp0 = opr::Concat::make( {sub(0), sub(1), sub(2), sub(3), cv(8), sub(4) / 8}, 0), tshp1 = opr::Concat::make( {sub(0), sub(1) * 8, sub(2), sub(3), sub(4) / 8}, 0); auto y0 = opr::Reshape::make(x, tshp0); auto y1 = opr::Dimshuffle::make(y0, {0, 1, 4, 2, 3, 5}); auto y2 = opr::Reshape::make(y1, tshp1); return y2.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW4, TensorFormat::CHWN4)] = [](VarNode* inp) -> VarNode* { megdnn::param::RelayoutFormat param; param.mode = megdnn::param::RelayoutFormat::Mode::NCHW4_CHWN4; auto reformat = opr::RelayoutFormat::make(inp, param); return reformat.node(); }; m_reformat[std::make_pair(TensorFormat::CHWN4, TensorFormat::NCHW4)] = [](VarNode* inp) -> VarNode* { megdnn::param::RelayoutFormat param; param.mode = megdnn::param::RelayoutFormat::Mode::CHWN4_NCHW4; auto reformat = opr::RelayoutFormat::make(inp, param); return reformat.node(); }; m_reformat[std::make_pair(TensorFormat::NCHW, TensorFormat::CHWN4)] = [](VarNode* inp) -> VarNode* { auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make( {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); auto y0 = opr::Reshape::make(x, tshp); auto y1 = opr::Dimshuffle::make(y0, {1, 3, 4, 0, 2}); return y1.node(); }; m_reformat[std::make_pair(TensorFormat::CHWN4, TensorFormat::NCHW)] = [](VarNode* inp) -> VarNode* { mgb_assert(inp->shape().ndim == 5 && inp->shape()[4] == 4); auto x = SymbolVar(inp); auto xshp = opr::GetVarShape::make(x); auto cv = [&x](int v) { return x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(3), sub(0) * 4, sub(1), sub(2)}, 0); auto y0 = opr::Dimshuffle::make(x, {3, 0, 4, 1, 2}); auto y1 = opr::Reshape::make(y0, tshp); return y1.node(); }; detect_shuffle_operations(); do_replace(); } }; /*! * \brief abstract operator representation of shuffle operation */ MGB_DEFINE_OPR_CLASS(ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr, cg::SingleCNOperatorNodeBase) // { public: AbstractShuffleOpr(VarNode* inpvar, TensorFormat inp_format, TensorFormat out_format); static SymbolVar make(VarNode* inpvar, TensorFormat inp_format, TensorFormat out_format); TensorFormat inp_format() const { return m_inp_format; } TensorFormat out_format() const { return m_out_format; } private: void init_output_static_infer_desc() override; void scn_do_execute() override; const TensorFormat m_inp_format; const TensorFormat m_out_format; }; MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr); void ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr::scn_do_execute() { mgb_throw(InternalError, "AbstractShuffleOpr cannot be executed"); } void ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr:: init_output_static_infer_desc() { using namespace cg::static_infer; auto&& mgr = owner_graph()->static_infer_manager(); DepVal deps; for (auto i : input()) deps.push_back({i, DepType::SHAPE}); auto infer_shape = [this](TensorShape& dst, const InpVal& inp) { TensorShape inp_shape = inp.val[0].shape(); if (m_inp_format == TensorFormat::NCHW4 && m_out_format == TensorFormat::NCHW32) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst = inp_shape; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4] * 8; } else if (m_inp_format == TensorFormat::NCHW32 && m_out_format == TensorFormat::NCHW4) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 32); dst = inp_shape; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] * 8; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = inp_shape[4] / 8; } else if (m_inp_format == TensorFormat::NCHW && m_out_format == TensorFormat::NCHW4) { mgb_assert(inp_shape.ndim == 4); dst.ndim = 5; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] / 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; dst[4] = 4; } else if (m_inp_format == TensorFormat::NCHW4 && m_out_format == TensorFormat::NCHW) { mgb_assert(inp_shape.ndim == 5 && inp_shape[4] == 4); dst.ndim = 4; dst[0] = inp_shape[0]; dst[1] = inp_shape[1] * 4; dst[2] = inp_shape[2]; dst[3] = inp_shape[3]; } else if (m_inp_format == TensorFormat::NCHW4 && m_out_format == TensorFormat::CHWN4) { dst.ndim = 5; dst[0] = inp_shape[1]; dst[1] = inp_shape[2]; dst[2] = inp_shape[3]; dst[3] = inp_shape[0]; dst[4] = inp_shape[4]; } else if (m_inp_format == TensorFormat::CHWN4 && m_out_format == TensorFormat::NCHW4) { dst.ndim = 5; dst[0] = inp_shape[3]; dst[1] = inp_shape[0]; dst[2] = inp_shape[1]; dst[3] = inp_shape[2]; dst[4] = inp_shape[4]; } else { mgb_throw(InternalError, "Unsupported input format and output format."); } return true; }; mgr.register_shape_infer(output(0), {SourceType::DEP, deps, infer_shape}); } ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr::AbstractShuffleOpr( VarNode* inpvar, TensorFormat inp_format, TensorFormat out_format) : Super(inpvar->owner_graph(), {}, "AbstractShuffleOpr", {inpvar}), m_inp_format{inp_format}, m_out_format{out_format} { add_input({inpvar}); add_equivalence_component>(m_inp_format); add_equivalence_component>(m_out_format); add_output(None)->dtype(inpvar->dtype()); } SymbolVar ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr::make( VarNode* inpvar, TensorFormat inp_format, TensorFormat out_format) { return inpvar->owner_graph() ->insert_opr(std::make_unique( inpvar, inp_format, out_format)) ->output(0); } void ShuffleShuffleRemovePass::Impl::detect_shuffle_operations() { auto rewriter = m_opt_state.graph().make_rewriter(); auto uniq_reader_check = UniqReaderCheck{m_opt_state.graph()}; auto try_reshape_shuffle = [&rewriter, &uniq_reader_check](OperatorNodeBase* opr) { // check shuffle auto shuffle = try_cast_as_op(opr); if (shuffle == nullptr) return false; auto&& param = shuffle->param(); if (param.pattern_len != 5) return false; bool is_nchw2nchw4 = param.pattern[0] == 0 && param.pattern[1] == 1 && param.pattern[2] == 3 && param.pattern[3] == 4 && param.pattern[4] == 2 && opr->output(0)->shape()[4] == 4; if (!is_nchw2nchw4) return false; if (!uniq_reader_check(shuffle->input(0))) return false; // check reshape auto reshape = try_cast_as_op(opr->input(0)->owner_opr()); if (reshape == nullptr) return false; auto inp_var = rewriter.get_var(reshape->input(0)); auto abstract_shuffle = AbstractShuffleOpr::make( inp_var, TensorFormat::NCHW, TensorFormat::NCHW4); rewriter.replace_var( opr->output(0), abstract_shuffle.node(), mgb_cstr_log("replace reformat(nchw -> nchw4) to " "AbstractShuffleOpr(nchw -> nchw4).")); return true; }; auto try_reshape_shuffle_reshape = [&rewriter, &uniq_reader_check]( OperatorNodeBase* opr) { // check reshape auto reshape1 = try_cast_as_op(opr); if (reshape1 == nullptr) return false; if (!uniq_reader_check(reshape1->input(0))) return false; // check shuffle auto shuffle = try_cast_as_op(opr->input(0)->owner_opr()); if (shuffle == nullptr) return false; auto&& param = shuffle->param(); if (param.pattern_len != 6) return false; bool is_nchw42nchw32 = param.pattern[0] == 0 && param.pattern[1] == 1 && param.pattern[2] == 3 && param.pattern[3] == 4 && param.pattern[4] == 2 && param.pattern[5] == 5 && shuffle->input(0)->shape()[5] == 4 && shuffle->input(0)->shape()[2] == 8; bool is_nchw322nchw4 = param.pattern[0] == 0 && param.pattern[1] == 1 && param.pattern[2] == 4 && param.pattern[3] == 2 && param.pattern[4] == 3 && param.pattern[5] == 5 && shuffle->input(0)->shape()[4] == 8 && shuffle->input(0)->shape()[5] == 4; if (!is_nchw42nchw32 && !is_nchw322nchw4) return false; if (!uniq_reader_check(shuffle->input(0))) return false; // check reshape auto reshape2 = try_cast_as_op(shuffle->input(0)->owner_opr()); if (reshape2 == nullptr) return false; auto inp_var = rewriter.get_var(reshape2->input(0)); TensorFormat inp_format = is_nchw42nchw32 ? TensorFormat::NCHW4 : TensorFormat::NCHW32, out_format = is_nchw42nchw32 ? TensorFormat::NCHW32 : TensorFormat::NCHW4; auto abstract_shuffle = AbstractShuffleOpr::make(inp_var, inp_format, out_format); std::string reformat_type = is_nchw42nchw32 ? "nchw4 -> nchw32" : "nchw32 -> nchw4"; rewriter.replace_var(opr->output(0), abstract_shuffle.node(), mgb_cstr_log(ssprintf("replace reformat(%s) to " "AbstractShuffleOpr(%s).", reformat_type.c_str(), reformat_type.c_str()) .c_str())); return true; }; auto try_shuffle_reshape = [&rewriter, &uniq_reader_check](OperatorNodeBase* opr) { // check reshape auto reshape = try_cast_as_op(opr); if (reshape == nullptr) return false; if (!uniq_reader_check(reshape->input(0))) return false; // check shuffle auto shuffle = try_cast_as_op(opr->input(0)->owner_opr()); if (shuffle == nullptr) return false; auto&& param = shuffle->param(); if (param.pattern_len != 5) return false; bool is_nchw42nchw = param.pattern[0] == 0 && param.pattern[1] == 1 && param.pattern[2] == 4 && param.pattern[3] == 2 && param.pattern[4] == 3 && shuffle->input(0)->shape()[4] == 4; if (!is_nchw42nchw) return false; auto inp_var = rewriter.get_var(shuffle->input(0)); auto abstract_shuffle = AbstractShuffleOpr::make( inp_var, TensorFormat::NCHW4, TensorFormat::NCHW); rewriter.replace_var( opr->output(0), abstract_shuffle.node(), mgb_cstr_log("replace reformat(nchw4 -> nchw) to " "AbstractShuffleOpr(nchw4 -> nchw).")); return true; }; auto try_relayout_format = [&rewriter](OperatorNodeBase* opr) { // check relayout format auto reformat = try_cast_as_op(opr); if (reformat == nullptr) return false; auto&& param = reformat->param(); if (param.mode != opr::RelayoutFormat::Param::Mode::CHWN4_NCHW4 && param.mode != opr::RelayoutFormat::Param::Mode::NCHW4_CHWN4) return false; auto inp_var = rewriter.get_var(reformat->input(0)); cg::SymbolVar abstract_shuffle; if (param.mode == opr::RelayoutFormat::Param::Mode::NCHW4_CHWN4) { abstract_shuffle = AbstractShuffleOpr::make( inp_var, TensorFormat::NCHW4, TensorFormat::CHWN4); } else { abstract_shuffle = AbstractShuffleOpr::make( inp_var, TensorFormat::CHWN4, TensorFormat::NCHW4); } rewriter.replace_var( opr->output(0), abstract_shuffle.node(), mgb_cstr_log("replace reformat(nchw4 -> nchw) to " "AbstractShuffleOpr(nchw4 -> nchw).")); return true; }; auto on_opr = [&try_reshape_shuffle, &try_shuffle_reshape, &try_reshape_shuffle_reshape, &try_relayout_format, &rewriter, &uniq_reader_check](OperatorNodeBase* opr) { if (!try_reshape_shuffle_reshape(opr) && !try_reshape_shuffle(opr) && !try_shuffle_reshape(opr) && !try_relayout_format(opr)) { auto new_opr = rewriter.auto_replace_outputs(opr); uniq_reader_check.update_on_opr_auto_replace(opr, new_opr); } }; m_opt_state.graph().iter(on_opr); rewriter.apply_inplace(); } void ShuffleShuffleRemovePass::Impl::do_replace() { auto rewriter = m_opt_state.graph().make_rewriter(); auto uniq_reader_check = UniqReaderCheck{m_opt_state.graph()}; ThinHashMap var2endpoint; ThinHashSet trt_opr_inps; SmallVector topo_order; auto cb = [&topo_order, &trt_opr_inps](OperatorNodeBase* opr) { topo_order.push_back(opr); MGB_MARK_USED_VAR(trt_opr_inps); #if MGB_ENABLE_TENSOR_RT if (opr->same_type()) { for (auto&& inp : opr->input()) trt_opr_inps.insert(inp); } #endif }; m_opt_state.graph().iter(cb); for (auto&& opr : reverse_adaptor(topo_order)) { if (opr->same_type() || opr->same_type()) { auto find = var2endpoint.find(opr->output(0)); if (find != var2endpoint.end()) { if (uniq_reader_check(opr->output(0))) { var2endpoint[opr->input(0)] = find->second; } else { var2endpoint[opr->input(0)] = opr->output(0); } } else { var2endpoint[opr->input(0)] = opr->output(0); } } } auto on_opr = [this, &rewriter, &uniq_reader_check, &trt_opr_inps, &var2endpoint](OperatorNodeBase* opr) { MGB_MARK_USED_VAR(trt_opr_inps); bool cond_opr = opr->same_type() || opr->same_type(); if (cond_opr) { bool cond_endpoint = var2endpoint[opr->input(0)] == opr->output(0); if (!cond_endpoint) return; auto cur = opr; auto var = opr->output(0), inp_var = opr->input(0); bool force_folding_typecvt = false; bool first_shuffle = false; // initialize inp_format and out_format TensorFormat out_format = TensorFormat::NCHW, inp_format = out_format; megdnn::DType inp_dtype = cur->input(0)->dtype(), out_dtype = cur->output(0)->dtype(); SmallVector out_dtype_vec; while (cond_opr) { if (cur->same_type()) { auto shuffle = try_cast_as_op(cur); inp_format = shuffle->inp_format(); if (!first_shuffle) { out_format = shuffle->out_format(); first_shuffle = true; } } else { mgb_assert(cur->same_type()); out_dtype_vec.push_back(cur->output(0)->dtype()); } inp_var = cur->input(0); bool cond_reader = uniq_reader_check(inp_var); if (!cond_reader) break; cur = cur->input(0)->owner_opr(); cond_opr = cur->same_type() || cur->same_type(); } std::reverse(out_dtype_vec.begin(), out_dtype_vec.end()); #if MGB_ENABLE_TENSOR_RT force_folding_typecvt = inp_var->owner_opr()->same_type() || trt_opr_inps.count(var); #endif auto new_var = rewriter.get_var(inp_var); if (inp_format != out_format) { new_var = m_reformat[std::make_pair(inp_format, out_format)]( new_var); } if (force_folding_typecvt) { inp_dtype = inp_var->dtype(); if (inp_dtype != out_dtype) { auto type_cvt = opr::TypeCvt::make(new_var, out_dtype); new_var = type_cvt.node(); } } else { if (out_dtype_vec.back() != var->dtype()) out_dtype_vec.push_back(var->dtype()); for (auto&& dtype : out_dtype_vec) { auto type_cvt = opr::TypeCvt::make(new_var, dtype); new_var = type_cvt.node(); } } rewriter.replace_var( var, new_var, mgb_cstr_log("replace Dimshuffle and TypeCvt chain")); } else { auto new_opr = rewriter.auto_replace_outputs(opr); uniq_reader_check.update_on_opr_auto_replace(opr, new_opr); } }; m_opt_state.graph().iter(on_opr); rewriter.apply_inplace(); } const char* ShuffleShuffleRemovePass::name() const { return mgb_cstr_log("shuffle shuffle remove pass"); } void ShuffleShuffleRemovePass::apply(OptState& opt) const { opt.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_SHAPE | VarReplaceCheckFlag::CHECK_DTYPE); Impl{opt}; } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}