/** * \file dnn/src/x86/conv_bias/int8/algos.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #pragma once #include "src/x86/conv_bias/opr_impl.h" namespace megdnn { namespace x86 { /* ===================== avx2 stride1 chanwise algo ===================== */ class ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8 final : public AlgoBase { SmallVector get_kimpls(const NCBKernSizeParam& param) const; static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); public: bool is_reproducible() const override { return true; } const char* name() const override { return "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_kimpls(param); } void* type() const override; }; /* ===================== avx2 stride1 direct algo ===================== */ class ConvBiasImpl::AlgoDirectAvx2Stride1Int8 final : public AlgoBase { SmallVector get_kimpls(const NCBKernSizeParam& param) const; static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); public: bool is_reproducible() const override { return true; } const char* name() const override { return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_kimpls(param); } void* type() const override; }; #if defined(MEGDNN_X86_WITH_MKL_DNN) /* ===================== mkldnn qint8 algo ===================== */ class ConvBiasImpl::AlgoMkldnnQint8 final : public AlgoBase { static void kern_mkldnn_s8x8x32(const NCBKernParam& param, const NCBKernIndex&); static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); public: AlgoMkldnnQint8() {} bool is_reproducible() const override { return true; } const char* name() const override { return "MKLDNN_INT8"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy) const override; size_t get_workspace(FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param) const override { size_t nr_threads = param.nr_threads; return get_bundle(param).total_size_in_bytes() * nr_threads; } SmallVector dispatch_kerns( FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param) const override { size_t group = param.filter_meta.group; size_t n = param.n; auto workspace_per_thread = get_bundle(param).total_size_in_bytes(); auto kern = [workspace_per_thread](const NCBKernParam& param, const NCBKernIndex& ncb_index) { auto thread_param = param; thread_param.workspace_ptr = reinterpret_cast( reinterpret_cast(param.workspace_ptr) + ncb_index.thread_id * workspace_per_thread); kern_mkldnn_s8x8x32(thread_param, std::move(ncb_index)); }; return {{kern, {group, n, 1_z}}}; } void* type() const override; }; /* ===================== mkldnn qint8 matmul algo ===================== */ class ConvBiasImpl::AlgoMkldnnMatmulQint8 final : public AlgoBase { static MatrixMul* get_matmul_opr(); static void kern_mkldnn_matmul_s8x8x32(const NCBKernParam& param, const NCBKernIndex&); static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); public: bool is_reproducible() const override { return true; } const char* name() const override { return "MKLDNN_MATMUL_INT8"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy) const override; size_t get_workspace(FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param) const override { return get_bundle(param).total_size_in_bytes(); } SmallVector dispatch_kerns( FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param) const override { size_t group = param.filter_meta.group; return {{kern_mkldnn_matmul_s8x8x32, {group, 1_z, 1_z}}}; } //! select matmul to the highest preference bool is_preferred(FallbackConvBiasImpl*, const NCBKernSizeParam& param) const override; void* type() const override; }; #endif /* ===================== avx2 int8 direct conv stride2 algo ===================== */ class ConvBiasImpl::AlgoAVX2DirectConvStride2 final : public AlgoBase { SmallVector get_kimpls(const NCBKernSizeParam& param) const; static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); public: bool is_reproducible() const override { return true; } const char* name() const override { return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const override; SmallVector dispatch_kerns( fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_kimpls(param); } void* type() const override; }; } // namespace x86 } // namespace megdnn // vim: syntax=cpp.doxygen