#include "megbrain_build_config.h" #if MGB_CUSTOM_OP #include "gtest/gtest.h" #include "megbrain/comp_node.h" #include "megbrain/custom/data_adaptor.h" #include "megbrain/custom/tensor.h" #include "megbrain/tensor.h" #include "megbrain_build_config.h" #define TENSOR_TEST_LOG 0 using namespace mgb; namespace custom { TEST(TestDevice, TestDevice) { #if MGB_CUDA ASSERT_TRUE(Device::is_legal("x86")); ASSERT_TRUE(Device::is_legal(DeviceEnum::cuda)); ASSERT_FALSE(Device::is_legal("cpu")); Device dev1; ASSERT_TRUE(dev1.str() == "invalid"); dev1 = "x86"; ASSERT_TRUE("x86" == dev1); Device dev2 = "cuda"; ASSERT_TRUE(dev2 == "cuda"); ASSERT_FALSE(dev2 == dev1); Device dev3 = dev2; ASSERT_TRUE(dev3 == dev2); ASSERT_FALSE(dev3 == dev1); Device dev4 = DeviceEnum::cuda; ASSERT_TRUE(dev4.enumv() == DeviceEnum::cuda); #if TENSOR_TEST_LOG std::cout << dev1.str() << "\n" << dev2.str() << "\n" << dev3.str() << "\n" << dev4.str() << std::endl; #endif CompNode compnode = to_builtin(dev3); ASSERT_TRUE(compnode.to_string_logical() == "gpux:0"); compnode = CompNode::load("cpu0:0"); Device dev5 = to_custom(compnode); ASSERT_TRUE(dev5.str() == "x86"); std::vector devs1 = {"x86", "cuda", "x86"}; megdnn::SmallVector compnodes = to_builtin(devs1); ASSERT_TRUE(compnodes[0].to_string_logical() == "cpux:0"); ASSERT_TRUE(compnodes[1].to_string_logical() == "gpux:0"); ASSERT_TRUE(compnodes[2].to_string_logical() == "cpux:0"); std::vector devs2 = to_custom(compnodes); ASSERT_TRUE(devs2[0] == "x86"); ASSERT_TRUE(devs2[1].str() == "cuda"); ASSERT_TRUE(devs2[2] == "x86"); #endif } TEST(TestShape, TestShape) { Shape shape1, shape2; ASSERT_TRUE(shape1.ndim() == 0); shape1 = {16, 32, 8, 8}; shape2 = shape1; ASSERT_TRUE(shape2.ndim() == 4); ASSERT_TRUE(shape2[0] == 16); ASSERT_TRUE(shape2[1] == 32); ASSERT_TRUE(shape2[2] == 8); ASSERT_TRUE(shape2[3] == 8); Shape shape3 = {16, 32, 8, 8}; const Shape shape4 = shape1; ASSERT_TRUE(shape3 == shape4); shape3[0] = 32; ASSERT_FALSE(shape3 == shape4); ASSERT_TRUE(shape3[0] == 32); ASSERT_TRUE(shape4[0] == 16); Shape shape5 = {2, 3, 4}; TensorShape bshape1 = to_builtin(shape5); ASSERT_TRUE(bshape1.ndim == 3); ASSERT_TRUE(bshape1[0] == 2); ASSERT_TRUE(bshape1[1] == 3); ASSERT_TRUE(bshape1[2] == 4); bshape1 = {4, 2, 3}; Shape shape6 = to_custom(bshape1); ASSERT_TRUE(shape6.ndim() == 3); ASSERT_TRUE(shape6[0] == 4); ASSERT_TRUE(shape6[1] == 2); ASSERT_TRUE(shape6[2] == 3); Shape shape7; shape7.ndim(3); shape7[1] = 4; ASSERT_TRUE(shape7 == Shape({0, 4, 0})); std::vector shapes1 = {{2, 3, 4}, {6}, {5, 7}}; megdnn::SmallVector bshapes = to_builtin(shapes1); ASSERT_TRUE(bshapes[0].total_nr_elems() == 2 * 3 * 4); ASSERT_TRUE(bshapes[1].total_nr_elems() == 6); ASSERT_TRUE(bshapes[2].total_nr_elems() == 35); std::vector shapes2 = to_custom(bshapes); ASSERT_TRUE(shapes2[0] == Shape({2, 3, 4})); ASSERT_TRUE(shapes2[1] == Shape({6})); ASSERT_TRUE(shapes2[2] == Shape({5, 7})); } TEST(TestDType, TestDType) { #if !MEGDNN_DISABLE_FLOAT16 ASSERT_TRUE(DType::is_legal("uint8")); ASSERT_TRUE(DType::is_legal(DTypeEnum::bfloat16)); DType dtype1, dtype2; ASSERT_TRUE(dtype1.str() == "invalid"); dtype1 = "float32"; ASSERT_TRUE(dtype1.str() == "float32"); dtype2 = dtype1; DType dtype3 = dtype2; ASSERT_TRUE(dtype3 == dtype1); ASSERT_TRUE(dtype3 == "float32"); dtype3 = "int8"; ASSERT_FALSE("float32" == dtype3.str()); ASSERT_FALSE(dtype3 == dtype2); DType dtype4 = DTypeEnum::int8, dtype5 = dtype3; ASSERT_TRUE(dtype4 == dtype5); ASSERT_TRUE(dtype4.is_compatible()); ASSERT_FALSE(dtype4.is_compatible()); DType dtype6 = "int32"; megdnn::DType bdtype1 = to_builtin(dtype6); ASSERT_TRUE(bdtype1.name() == std::string("Int32")); bdtype1 = megdnn::DType::from_enum(megdnn::DTypeEnum::BFloat16); DType dtype7 = to_custom(bdtype1); ASSERT_TRUE(dtype7.enumv() == DTypeEnum::bfloat16); std::vector dtypes1 = {"int8", "uint8", "float16"}; megdnn::SmallVector bdtypes = to_builtin(dtypes1); ASSERT_TRUE(bdtypes[0].name() == std::string("Int8")); ASSERT_TRUE(bdtypes[1].name() == std::string("Uint8")); ASSERT_TRUE(bdtypes[2].name() == std::string("Float16")); std::vector dtypes2 = to_custom(bdtypes); ASSERT_TRUE(dtypes2[0] == "int8"); ASSERT_TRUE(dtypes2[1] == "uint8"); ASSERT_TRUE(dtypes2[2] == "float16"); #endif } TEST(TestDType, TestDTypeQuantized) { DType quint8_1("quint8", 3.2, 15); DType quint8_2("quint8", 3.2, 15); DType quint8_3("quint8", 3.2, 16); DType quint8_4("quint8", 3.1, 15); ASSERT_TRUE(quint8_1 == quint8_2); ASSERT_FALSE(quint8_1 == quint8_3); ASSERT_FALSE(quint8_1 == quint8_4); ASSERT_TRUE(quint8_1.scale() == 3.2f); ASSERT_TRUE(quint8_1.zero_point() == 15); DType qint8("qint8", 3.3f); DType qint16("qint16", 3.4f); DType qint32("qint32", 3.5f); ASSERT_TRUE(qint8.scale() == 3.3f); ASSERT_TRUE(qint16.scale() == 3.4f); ASSERT_TRUE(qint32.scale() == 3.5f); ASSERT_TRUE(qint8.enumv() == DTypeEnum::qint8); ASSERT_TRUE(qint8.str() == "qint8"); } TEST(TestFormat, TestFormat) { Format format1, format2("default"); ASSERT_TRUE(format1.is_default()); ASSERT_TRUE(format2.is_default()); Format format3 = format1; ASSERT_TRUE(format3.is_default()); } TEST(TestTensor, TestTensor) { CompNode builtin_device = CompNode::load("cpux:0"); TensorShape builtin_shape = {3, 2, 4}; megdnn::DType builtin_dtype = dtype::Int32{}; DeviceTensorND dev_tensor(builtin_device, builtin_shape, builtin_dtype); Tensor tensor1 = to_custom(dev_tensor); Tensor tensor2 = to_custom(dev_tensor); Device device = tensor1.device(); Shape shape = tensor1.shape(); DType dtype = tensor1.dtype(); ASSERT_TRUE(device == "x86"); ASSERT_TRUE(shape.ndim() == 3); ASSERT_TRUE(shape[0] == 3); ASSERT_TRUE(shape[1] == 2); ASSERT_TRUE(shape[2] == 4); ASSERT_TRUE(shape == std::vector({3, 2, 4})); ASSERT_TRUE(dtype == "int32"); int* raw_ptr1 = tensor1.data(); for (size_t i = 0; i < tensor1.size(); i++) raw_ptr1[i] = i; int* raw_ptr2 = tensor2.data(); for (size_t i = 0; i < tensor2.size(); i++) ASSERT_TRUE(raw_ptr2[i] == static_cast(i)); Tensor tensor3 = tensor2; int* raw_ptr3 = tensor3.data(); for (size_t i = 0; i < tensor3.size(); i++) ASSERT_TRUE(raw_ptr3[i] == static_cast(i)); ASSERT_TRUE(raw_ptr1 == raw_ptr2); ASSERT_TRUE(raw_ptr1 == raw_ptr3); for (size_t i = 0; i < tensor3.size(); i++) { raw_ptr3[i] = -static_cast(i); } for (size_t i = 0; i < tensor1.size(); i++) { ASSERT_TRUE(raw_ptr1[i] == -static_cast(i)); } DeviceTensorND new_dev_tensor = to_builtin(tensor3); int* builtin_ptr = new_dev_tensor.ptr(); for (size_t i = 0; i < new_dev_tensor.shape().total_nr_elems(); i++) { ASSERT_TRUE(builtin_ptr[i] == -static_cast(i)); } } TEST(TestTensor, TestTensorQuantized) { #if MGB_CUDA CompNode builtin_device = CompNode::load("gpux:0"); TensorShape builtin_shape = {3, 2, 4}; megdnn::DType builtin_dtype = dtype::Quantized8Asymm{3.2f, uint8_t(15)}; DeviceTensorND dev_tensor(builtin_device, builtin_shape, builtin_dtype); Tensor tensor1 = to_custom(dev_tensor); Tensor tensor2 = to_custom(dev_tensor); Device device1 = tensor1.device(), device2 = tensor2.device(); Shape shape1 = tensor1.shape(), shape2 = tensor2.shape(); DType dtype1 = tensor1.dtype(), dtype2 = tensor2.dtype(); ASSERT_TRUE(device1 == "cuda"); ASSERT_TRUE(shape1.ndim() == 3); ASSERT_TRUE(shape1[0] == 3); ASSERT_TRUE(shape1[1] == 2); ASSERT_TRUE(shape1[2] == 4); ASSERT_TRUE(shape1 == std::vector({3, 2, 4})); ASSERT_TRUE(dtype1 == "quint8"); ASSERT_TRUE(dtype1.scale() == 3.2f); ASSERT_TRUE(dtype1.zero_point() == 15); ASSERT_TRUE(device1 == device2); ASSERT_TRUE(shape1 == shape2); ASSERT_TRUE(dtype1 == dtype2); #endif } TEST(TestTensor, TestTensorAccessorND) { size_t N = 2, C = 4, H = 6, W = 8; CompNode builtin_device = CompNode::load("cpux"); TensorShape builtin_shape = {N, C, H, W}; megdnn::DType builtin_dtype = dtype::Int32{}; DeviceTensorND dev_tensor(builtin_device, builtin_shape, builtin_dtype); int* builtin_ptr = dev_tensor.ptr(); for (size_t i = 0; i < dev_tensor.shape().total_nr_elems(); i++) { builtin_ptr[i] = i; } Tensor tensor = to_custom_tensor(dev_tensor); auto accessor = tensor.accessor(); for (size_t n = 0; n < N; ++n) { for (size_t c = 0; c < C; ++c) { for (size_t h = 0; h < H; ++h) { for (size_t w = 0; w < W; ++w) { int32_t idx = n * C * H * W + c * H * W + h * W + w; ASSERT_TRUE(accessor[n][c][h][w] == idx); } } } } } TEST(TestTensor, TestTensorAccessor1D) { CompNode builtin_device = CompNode::load("cpux"); TensorShape builtin_shape = {32}; megdnn::DType builtin_dtype = dtype::Float32{}; DeviceTensorND dev_tensor(builtin_device, builtin_shape, builtin_dtype); float* builtin_ptr = dev_tensor.ptr(); for (size_t i = 0; i < dev_tensor.shape().total_nr_elems(); i++) { builtin_ptr[i] = i; } Tensor tensor = to_custom_tensor(dev_tensor); auto accessor = tensor.accessor(); for (size_t n = 0; n < 32; ++n) { ASSERT_TRUE(accessor[n] == n); } } } // namespace custom #endif