/** * \file dnn/src/naive/convolution/helper.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "megdnn/oprs/nn.h" #include "src/common/utils.h" #include namespace megdnn { namespace naive { namespace convolution { struct GroupCounter { const size_t grp_size; size_t cur_grp = 0, cur_off = 0; explicit GroupCounter(size_t grp_size) : grp_size{grp_size} {} void next() { if ((++cur_off) == grp_size) { cur_off = 0; ++cur_grp; } } }; struct StrategyFwd { template static void on(st& s, ft& f, ct& d, DType, DType, DType) { d += static_cast(s) * static_cast(f); } template static void write(ct& d, dt& dst) { dst = static_cast
(d); } template static void init_dval(dt& d) { d = static_cast
(0); } }; // Explicit specialization of member function template is not allowed to happen // in class scope, this is a defect of C++ specification which will be fixed in // C++17. We workaround this by marking the implmentation as inline and move // out of class definition. template <> inline void StrategyFwd::on(dt_quint8& s, dt_quint8& f, dt_qint32& d, DType src_dt, DType filt_dt, DType) { auto cast = [](const dt_quint8& val, DType dt) { return dt_qint32(static_cast(val.as_uint8()) - dt.param().zero_point); }; d += cast(s, src_dt) * cast(f, filt_dt); } template <> inline void StrategyFwd::on(dt_qint8& s, dt_qint8& f, dt_qint32& d, DType, DType, DType) { auto cast = [](const dt_qint8& val) { return dt_qint32(static_cast(val.as_int8())); }; d += cast(s) * cast(f); } struct StrategyBwdData { template static void on(st& s, ft& f, dt& d, DType, DType, DType) { s += static_cast(f) * static_cast(d); } template static void write(ct&, dt&) {} template static void init_dval(dt&) {} }; template <> inline void StrategyBwdData::on(int& s, signed char& f, signed char& d, DType, DType, DType) { auto cast = [](signed char& val) { return static_cast(((megdnn::dt_qint8)val).as_int8()); }; s += cast(f) * cast(d); } template <> inline void StrategyBwdData::on(dt_qint32& s, dt_quint8& f, dt_quint8& d, DType, DType filt_dt, DType dst_dt) { auto cast = [](const dt_quint8& val, DType dt) { return dt_qint32(static_cast(val.as_uint8()) - dt.param().zero_point); }; s += cast(f, filt_dt) * cast(d, dst_dt); } template <> inline void StrategyBwdData::on(dt_qint32& s, dt_qint8& f, dt_qint8& d, DType, DType, DType) { auto cast = [](const dt_qint8& val) { return dt_qint32(static_cast(val.as_int8())); }; s += cast(f) * cast(d); } struct StrategyBwdFlt { template static void on(st& s, ft& f, dt& d, DType, DType, DType) { f += static_cast(s) * static_cast(d); } template static void write(ct&, dt&) {} template static void init_dval(dt&) {} }; struct ConvFilterVisitor { template static ftype* get_current_ptr(ftype* fptr, size_t /* batch */, size_t /* oc */, size_t /* oh */, size_t /* ow */, size_t /* filter_sizes*/) { return fptr; } }; template void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, _megdnn_tensor_out dst, const FilterMeta& filter_meta) { size_t spatial_start, channel_pos, batch_pos; using Format = param::Convolution::Format; if (filter_meta.format == Format::NCHW || filter_meta.format == Format::NCHW88 || filter_meta.format == Format::NCHW44 || filter_meta.format == Format::NCHW4 || filter_meta.format == Format::NCHW8 || filter_meta.format == Format::NCHW32) { spatial_start = 2; channel_pos = 1; batch_pos = 0; } else if (filter_meta.format == Format::CHWN4) { spatial_start = 1; channel_pos = 0; batch_pos = 3; } else { megdnn_assert(filter_meta.format == Format::NHWC, "invalid conv format"); spatial_start = 1; channel_pos = 3; batch_pos = 0; } auto N = src.layout.shape[batch_pos], IH = src.layout.shape[spatial_start], IW = src.layout.shape[spatial_start + 1]; auto FH = filter_meta.spatial[0], FW = filter_meta.spatial[1]; auto OC = dst.layout.shape[channel_pos], OH = dst.layout.shape[spatial_start], OW = dst.layout.shape[spatial_start + 1]; if (filter_meta.format == Format::NCHW4 || filter_meta.format == Format::CHWN4 || filter_meta.format == Format::NCHW44) { OC *= 4; } else if (filter_meta.format == Format::NCHW8 || filter_meta.format == Format::NCHW88) { OC *= 8; } else if (filter_meta.format == Format::NCHW32) { OC *= 32; } size_t FS_G, FS_OC, FS_IC, FS_SPATIAL; if (filter_meta.format == Format::NCHW || filter_meta.format == Format::NCHW4 || filter_meta.format == Format::NCHW8 || filter_meta.format == Format::NCHW32) { // g, oc, ic, fh, fw FS_SPATIAL = 1; FS_IC = FH * FW; FS_OC = FS_IC * filter_meta.icpg; FS_G = FS_OC * filter_meta.ocpg; } else if (filter_meta.format == Format::CHWN4) { // g, ic, fh, fw, oc, pack_size FS_SPATIAL = filter_meta.ocpg * 4; FS_IC = FH * FW * FS_SPATIAL; FS_OC = 4; FS_G = FS_IC * filter_meta.icpg; } else if (filter_meta.format == Format::NCHW88) { if (filter_meta.group > 1 && filter_meta.icpg == 1 && src.layout.ndim == 5 && filter_meta.ocpg == 1) { FS_SPATIAL = 8; FS_IC = FH * FW * FS_SPATIAL; FS_OC = FS_IC * filter_meta.icpg; FS_G = FS_OC * filter_meta.ocpg; } else { if (src.layout.ndim == 4 && dst.layout.ndim == 5) { FS_IC = 8; FS_SPATIAL = filter_meta.icpg * FS_IC; FS_OC = FH * FW * FS_SPATIAL; FS_G = FS_OC * filter_meta.ocpg / 8; } else { FS_SPATIAL = 8 * 8; FS_IC = FH * FW * FS_SPATIAL; FS_OC = FS_IC * filter_meta.icpg / 8; FS_G = FS_OC * filter_meta.ocpg / 8; } } } else if (filter_meta.format == Format::NCHW44) { if (filter_meta.group > 1 && filter_meta.icpg == 1 && src.layout.ndim == 5 && filter_meta.ocpg == 1) { FS_SPATIAL = 4; FS_IC = FH * FW * FS_SPATIAL; FS_OC = FS_IC * filter_meta.icpg; FS_G = FS_OC * filter_meta.ocpg; } else { if (src.layout.ndim == 4 && dst.layout.ndim == 5) { FS_IC = 4; FS_SPATIAL = filter_meta.icpg * FS_IC; FS_OC = FH * FW * FS_SPATIAL; FS_G = FS_OC * filter_meta.ocpg / 4; } else { FS_SPATIAL = 4 * 4; FS_IC = FH * FW * FS_SPATIAL; FS_OC = FS_IC * filter_meta.icpg / 4; FS_G = FS_OC * filter_meta.ocpg / 4; } } } else { // g, oc, fh, fw, ic megdnn_assert(filter_meta.format == Format::NHWC); FS_IC = 1; FS_SPATIAL = filter_meta.icpg; FS_OC = FS_SPATIAL * FH * FW; FS_G = FS_OC * filter_meta.ocpg; } int ph = filter_meta.padding[0], pw = filter_meta.padding[1]; size_t sh = filter_meta.stride[0], sw = filter_meta.stride[1]; int dh = filter_meta.dilation[0], dw = filter_meta.dilation[1]; stype* __restrict sptr = src.compatible_ptr(); dtype* __restrict dptr = dst.compatible_ptr(); int h_offset = -ph, w_offset = -pw; if (filter_meta.should_flip) { h_offset += filter_meta.dilated_spatial[0] - 1; w_offset += filter_meta.dilated_spatial[1] - 1; dh = -dh; dw = -dw; } auto get_linear_addr = [&filter_meta, &src](ptrdiff_t n, ptrdiff_t c, ptrdiff_t h, ptrdiff_t w, const TensorLayout& layout, bool is_output) -> ptrdiff_t { if (filter_meta.format == Format::NCHW) { return n * layout.stride[0] + c * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3]; } else if (filter_meta.format == Format::NHWC) { return n * layout.stride[0] + h * layout.stride[1] + w * layout.stride[2] + c * layout.stride[3]; } else if (filter_meta.format == Format::NCHW8 || filter_meta.format == Format::NCHW88) { if (filter_meta.format == Format::NCHW88 && !is_output && src.layout.ndim == 4) { return n * layout.stride[0] + c * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3]; } else { return n * layout.stride[0] + (c / 8) * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3] + (c & 0b111) * layout.stride[4]; } } else if (filter_meta.format == Format::NCHW44) { if (filter_meta.format == Format::NCHW44 && !is_output && src.layout.ndim == 4) { return n * layout.stride[0] + c * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3]; } else { return n * layout.stride[0] + (c / 4) * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3] + (c % 4) * layout.stride[4]; } } else if (filter_meta.format == Format::NCHW32) { return n * layout.stride[0] + (c >> 5) * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3] + (c & 0x1F) * layout.stride[4]; } else if (filter_meta.format == Format::CHWN4) { return (c / 4) * layout.stride[0] + h * layout.stride[1] + w * layout.stride[2] + n * layout.stride[3] + (c % 4) * layout.stride[4]; } else { megdnn_assert(filter_meta.format == Format::NCHW4, "invalid conv format"); return n * layout.stride[0] + (c / 4) * layout.stride[1] + h * layout.stride[2] + w * layout.stride[3] + (c & 0b11) * layout.stride[4]; } }; auto get_filter_addr = [&](GroupCounter& gc_out, size_t ic, size_t ic0, size_t fh, size_t fw) { if (filter_meta.format == Format::NCHW4) { return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) / 4 * FS_IC * 4 + (fh * FW + fw) * FS_SPATIAL * 4 + ((ic - ic0) & 0b11); } else if (filter_meta.format == Format::NCHW8) { return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) / 8 * FS_IC * 8 + (fh * FW + fw) * FS_SPATIAL * 8 + ((ic - ic0) & 0b111); } else if (filter_meta.format == Format::NCHW32) { return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) / 32 * FS_IC * 32 + (fh * FW + fw) * FS_SPATIAL * 32 + ((ic - ic0) & 0x1F); } else if (filter_meta.format == Format::CHWN4) { return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) / 4 * FS_IC + (fh * FW + fw) * FS_SPATIAL + ((ic - ic0) % 4); } else if (filter_meta.format == Format::NCHW88) { if (src.layout.ndim == 4) { // ic < 8, input is nchw return gc_out.cur_grp * FS_G + gc_out.cur_off / 8 * FS_OC + (fh * FW + fw) * FS_SPATIAL + (ic - ic0) * FS_IC + gc_out.cur_off % 8; } else if (filter_meta.group > 1 && filter_meta.icpg == 1 && filter_meta.ocpg == 1 && src.layout.ndim == 5) { // dw case return gc_out.cur_grp / 8 * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) * FS_IC + (fh * FW + fw) * FS_SPATIAL + gc_out.cur_grp % 8; } else if (src.layout.ndim == 5) { // normal case return gc_out.cur_grp * FS_G + gc_out.cur_off / 8 * FS_OC + (ic - ic0) / 8 * FS_IC + (fh * FW + fw) * FS_SPATIAL + ((ic - ic0) & 0b111) * 8 + gc_out.cur_off % 8; } else { megdnn_assert( 0, "nchw88 naive not support this input and output\n"); } } else if (filter_meta.format == Format::NCHW44) { if (src.layout.ndim == 4) { // ic < 8, input is nchw return gc_out.cur_grp * FS_G + gc_out.cur_off / 4 * FS_OC + (fh * FW + fw) * FS_SPATIAL + (ic - ic0) * FS_IC + gc_out.cur_off % 4; } else if (filter_meta.group > 1 && filter_meta.icpg == 1 && filter_meta.ocpg == 1 && src.layout.ndim == 5) { // dw case return gc_out.cur_grp / 4 * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) * FS_IC + (fh * FW + fw) * FS_SPATIAL + gc_out.cur_grp % 4; } else if (src.layout.ndim == 5) { // normal case return gc_out.cur_grp * FS_G + gc_out.cur_off / 4 * FS_OC + (ic - ic0) / 4 * FS_IC + (fh * FW + fw) * FS_SPATIAL + ((ic - ic0) % 4) * 4 + gc_out.cur_off % 4; } else { megdnn_assert( 0, "nchw44 naive not support this input and output\n"); } } else { return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + (ic - ic0) * FS_IC + (fh * FW + fw) * FS_SPATIAL; } }; size_t filter_sizes = filter_meta.ocpg * filter_meta.icpg * FH * FW; for (size_t n = 0; n < N; ++n) { GroupCounter gc_out{filter_meta.ocpg}; for (size_t oc = 0; oc < OC; ++oc, gc_out.next()) for (size_t oh = 0; oh < OH; ++oh) for (size_t ow = 0; ow < OW; ++ow) { comp_type dval = dptr[get_linear_addr(n, oc, oh, ow, dst.layout, true)]; ftype* fptr_cur = FilterVisitor::template get_current_ptr( fptr, n, oc, oh, ow, filter_sizes); Strategy::init_dval(dval); for (size_t fh = 0; fh < FH; ++fh) for (size_t fw = 0; fw < FW; ++fw) { size_t ih = sh * oh + fh * dh + h_offset, iw = sw * ow + fw * dw + w_offset; // here ih and iw are represented in unsigned int // they will become very large if underflow occurs if (ih < IH && iw < IW) { size_t ic0 = gc_out.cur_grp * filter_meta.icpg, ic1 = ic0 + filter_meta.icpg; for (size_t ic = ic0; ic < ic1; ++ic) { stype& sval = sptr[get_linear_addr( n, ic, ih, iw, src.layout, false)]; ftype& fval = fptr_cur[get_filter_addr( gc_out, ic, ic0, fh, fw)]; Strategy::on(sval, fval, dval, src.layout.dtype, filter_meta.dtype, dst.layout.dtype); } } } Strategy::write(dval, dptr[get_linear_addr(n, oc, oh, ow, dst.layout, true)]); } } } template void compute2d_hwcd4(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst, const FilterMeta& filter_meta) { // The filter's layout is (G, OC/4, FH, FW, IC, 4) when using mad // and (G, OC/4, FH, FW, IC/4, 4, 4) when using dot. bool use_dot = false; if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS8 || src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm || (src.layout.dtype.enumv() == DTypeEnum::QuantizedS32 && (filter.layout.dtype.enumv() == DTypeEnum::QuantizedS8 || filter.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm))) use_dot = true; using Format = param::Convolution::Format; megdnn_assert(filter_meta.format == Format::NHWCD4); auto N = src.layout.shape[0], IH = src.layout.shape[1], IW = src.layout.shape[3]; auto FH = filter_meta.spatial[0], FW = filter_meta.spatial[1]; auto OC = dst.layout.shape[2] * 4, OH = dst.layout.shape[1], OW = dst.layout.shape[3]; int ph = filter_meta.padding[0], pw = filter_meta.padding[1]; size_t sh = filter_meta.stride[0], sw = filter_meta.stride[1]; int dh = filter_meta.dilation[0], dw = filter_meta.dilation[1]; stype* __restrict sptr = src.compatible_ptr(); ftype* __restrict fptr = filter.compatible_ptr(); dtype* __restrict dptr = dst.compatible_ptr(); megdnn_assert(!filter_meta.should_flip); int h_offset = -ph, w_offset = -pw; auto get_linear_addr = [](size_t n, size_t c, size_t h, size_t w, const TensorLayout& layout) -> size_t { return n * layout.stride[0] + h * layout.stride[1] + (c / 4) * layout.stride[2] + w * layout.stride[3] + c % 4 * layout.stride[4]; }; size_t FS_G, FS_OCB, FS_SPATIAL; if (!use_dot && filter.layout.ndim == 5) { if (filter_meta.ocpg == 1 && filter_meta.icpg == 1) { // chanwise conv, (G/4, 1, FH, FW, 4) FS_G = filter.layout.stride[0]; FS_OCB = 0; FS_SPATIAL = 4; } else { // dense conv, (OC/4, FH, FW, IC, 4) FS_G = 0; FS_OCB = filter.layout.stride[0]; FS_SPATIAL = filter.layout.stride[2]; } } else if (!use_dot && filter.layout.ndim == 6) { // group conv, (G, OC/4, FH, FW, IC, 4) FS_G = filter.layout.stride[0]; FS_OCB = filter.layout.stride[1]; FS_SPATIAL = filter.layout.stride[3]; } else if (use_dot && filter.layout.ndim == 6) { // dense conv used dot, (OC/4, FH, FW, IC/4, 4, 4) FS_G = 0; FS_OCB = filter.layout.stride[0]; FS_SPATIAL = filter.layout.stride[2]; } else if (use_dot && filter.layout.ndim == 7) { // group conv used dot, (G, OC/4, FH, FW, IC/4, 4, 4) FS_G = filter.layout.stride[0]; FS_OCB = filter.layout.stride[1]; FS_SPATIAL = filter.layout.stride[3]; } else if (use_dot && filter.layout.ndim == 5 && filter_meta.ocpg == 1 && filter_meta.icpg == 1) { // chanwise conv, (G/4, 1, FH, FW, 4) FS_G = filter.layout.stride[0]; FS_OCB = 0; FS_SPATIAL = 4; } else { megdnn_assert(0, "invalid filter layout"); } auto get_filter_addr = [&use_dot, &FS_G, &FS_OCB, &FS_SPATIAL, &FW, &filter_meta](size_t group, size_t offset, size_t fh, size_t fw, size_t c) -> size_t { if (filter_meta.ocpg == 1 && filter_meta.icpg == 1) { return (group / 4) * FS_G + (fh * FW + fw) * FS_SPATIAL + (group % 4); } else if (!use_dot) { return group * FS_G + (offset / 4) * FS_OCB + (fh * FW + fw) * FS_SPATIAL + c * 4 + (offset % 4); } else { megdnn_assert(use_dot); return group * FS_G + (offset / 4) * FS_OCB + (fh * FW + fw) * FS_SPATIAL + (c / 4) * 16 + (offset % 4) * 4 + (c % 4); } }; size_t filter_sizes = filter_meta.ocpg * filter_meta.icpg * FH * FW; for (size_t n = 0; n < N; ++n) { GroupCounter gc_out{filter_meta.ocpg}; for (size_t oc = 0; oc < OC; ++oc, gc_out.next()) for (size_t oh = 0; oh < OH; ++oh) for (size_t ow = 0; ow < OW; ++ow) { comp_type dval = dptr[get_linear_addr(n, oc, oh, ow, dst.layout)]; Strategy::init_dval(dval); ftype* fptr_cur = FilterVisitor::template get_current_ptr( fptr, n, oc, oh, ow, filter_sizes); for (size_t fh = 0; fh < FH; ++fh) for (size_t fw = 0; fw < FW; ++fw) { size_t ih = sh * oh + fh * dh + h_offset, iw = sw * ow + fw * dw + w_offset; // here ih and iw are represented in unsigned int // they will become very large if underflow occurs if (ih < IH && iw < IW) { size_t ic0 = gc_out.cur_grp * filter_meta.icpg, ic1 = ic0 + filter_meta.icpg; for (size_t ic = ic0; ic < ic1; ++ic) { stype& sval = sptr[get_linear_addr( n, ic, ih, iw, src.layout)]; ftype& fval = fptr_cur[get_filter_addr( gc_out.cur_grp, gc_out.cur_off, fh, fw, ic - ic0)]; Strategy::on(sval, fval, dval, src.layout.dtype, filter_meta.dtype, dst.layout.dtype); } } } Strategy::write( dval, dptr[get_linear_addr(n, oc, oh, ow, dst.layout)]); } } } //! forward with only filter ptr template void forward(_megdnn_tensor_in src, const ftype* fptr, _megdnn_tensor_out dst, const Convolution::CanonizedFilterMeta& filter_meta) { megdnn_assert(filter_meta.spatial_ndim == 2); megdnn_assert(filter_meta.format == param::Convolution::Format::NCHW || filter_meta.format == param::Convolution::Format::NHWC || filter_meta.format == param::Convolution::Format::NCHW88 || filter_meta.format == param::Convolution::Format::NCHW44 || filter_meta.format == param::Convolution::Format::NCHW4); compute2d( src, const_cast(fptr), dst, filter_meta); } //! forward with full filter (for API compatibility) template void forward(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst, const Convolution::CanonizedFilterMeta& filter_meta) { if (filter_meta.format == param::Convolution::Format::NHWCD4) { return compute2d_hwcd4( src, filter, dst, filter_meta); } return forward( src, filter.compatible_ptr(), dst, filter_meta); } template void backward_data(_megdnn_tensor_in filter, _megdnn_tensor_in diff, _megdnn_tensor_out grad, const Convolution::CanonizedFilterMeta& filter_meta) { megdnn_assert(grad.layout.is_contiguous()); memset(grad.raw_ptr, 0, grad.layout.span().dist_byte()); megdnn_assert(filter_meta.spatial_ndim == 2); if (filter_meta.format == param::Convolution::Format::NHWCD4) { return compute2d_hwcd4( grad, filter, diff, filter_meta); } compute2d( grad, filter.compatible_ptr(), diff, filter_meta); } template void backward_filter(_megdnn_tensor_in src, _megdnn_tensor_in diff, _megdnn_tensor_out grad, const Convolution::CanonizedFilterMeta& filter_meta) { megdnn_assert(grad.layout.is_contiguous()); memset(grad.raw_ptr, 0, grad.layout.span().dist_byte()); megdnn_assert(filter_meta.spatial_ndim == 2); compute2d( src, grad.compatible_ptr(), diff, filter_meta); } template void forward_bias(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_out dst, dt_byte* /* workspace_ptr */, const FilterMeta& filter_meta) { megdnn_assert(filter_meta.spatial_ndim == 2); switch (filter_meta.format) { case param::Convolution::Format::NCHW: case param::Convolution::Format::NCHW88: case param::Convolution::Format::NCHW44: case param::Convolution::Format::NHWC: case param::Convolution::Format::NCHW4: case param::Convolution::Format::NCHW8: case param::Convolution::Format::NCHW32: case param::Convolution::Format::CHWN4: compute2d(src, filter.compatible_ptr(), dst, filter_meta); break; case param::Convolution::Format::NHWCD4: compute2d_hwcd4(src, filter, dst, filter_meta); break; default: megdnn_assert_internal(0); } //! we can not decide with bias.raw_ptr, as non bias the raw_ptr is not //! nullptr if (bias.layout.ndim != 0) { if (dst.layout.eq_shape(bias.layout) && dst.layout.dtype.enumv() == bias.layout.dtype.enumv()) { dtype* dst_ptr = dst.compatible_ptr(); dtype* bias_ptr = bias.compatible_ptr(); for (size_t i = 0; i < dst.layout.span().dist_elem(); i++) { comp_type val = static_cast(dst_ptr[0]) + static_cast(bias_ptr[0]); dst_ptr[0] = val; dst_ptr++; bias_ptr++; } return; } using Format = param::ConvBias::Format; switch (filter_meta.format) { case Format::NCHW: { int dst_batch = dst.layout.shape[0]; int dst_channel = dst.layout.shape[1]; int chann_stride = dst.layout.shape[2] * dst.layout.shape[3]; dtype* dst_ptr = dst.compatible_ptr(); for (int batch = 0; batch < dst_batch; ++batch) { for (int chan = 0; chan < dst_channel; ++chan) { dtype bias_val = bias.compatible_ptr()[chan]; for (int i = 0; i < chann_stride; ++i, ++dst_ptr) { comp_type val = static_cast(dst_ptr[0]) + static_cast(bias_val); dst_ptr[0] = val; } } } break; }; #define BIAS_ADD_NCHWx(_pack_size) \ do { \ megdnn_assert(dst.layout.is_contiguous()); \ int dst_batch = dst.layout.shape[0]; \ int dst_channel = dst.layout.shape[1] * (_pack_size); \ int chann_stride = dst.layout.shape[2] * dst.layout.shape[3]; \ dtype* dst_ptr = dst.compatible_ptr(); \ for (int batch = 0; batch < dst_batch; ++batch) { \ for (int chan = 0; chan < dst_channel; ++chan) { \ dtype bias_val = bias.compatible_ptr()[chan]; \ for (int i = 0; i < chann_stride; ++i) { \ int idx = batch * dst_channel * chann_stride + \ (chan / (_pack_size)) * \ (chann_stride * (_pack_size)) + \ i * (_pack_size) + chan % (_pack_size); \ dst_ptr[idx] = static_cast(dst_ptr[idx]) + \ static_cast(bias_val); \ } \ } \ } \ } while (0) case Format::NCHW44: case Format::NCHW4: { BIAS_ADD_NCHWx(4); break; }; case Format::NCHW8: { BIAS_ADD_NCHWx(8); break; }; case Format::NCHW32: { BIAS_ADD_NCHWx(32); break; }; case Format::NCHW88: { BIAS_ADD_NCHWx(8); break; }; #define BIAS_ADD_CHWNx(_pack_size) \ do { \ megdnn_assert(dst.layout.is_contiguous()); \ int dst_batch = dst.layout.shape[3]; \ int dst_channel = dst.layout.shape[0] * (_pack_size); \ int chann_stride = \ dst.layout.shape[1] * dst.layout.shape[2] * dst_batch; \ dtype* dst_ptr = dst.compatible_ptr(); \ for (int chan = 0; chan < dst_channel; ++chan) { \ dtype bias_val = bias.compatible_ptr()[chan]; \ for (int i = 0; i < chann_stride; ++i) { \ int idx = \ (chan / (_pack_size)) * chann_stride * (_pack_size) + \ i * (_pack_size) + chan % (_pack_size); \ dst_ptr[idx] = static_cast(dst_ptr[idx]) + \ static_cast(bias_val); \ } \ } \ } while (0) case Format::CHWN4: { BIAS_ADD_CHWNx(4); break; } case Format::NHWC: { int dst_nhw = dst.layout.shape[0] * dst.layout.shape[1] * dst.layout.shape[2]; int dst_channel = dst.layout.shape[3]; dtype* dst_ptr = dst.compatible_ptr(); for (int nhw = 0; nhw < dst_nhw; ++nhw) { for (int chan = 0; chan < dst_channel; ++chan, ++dst_ptr) { dtype bias_val = bias.compatible_ptr()[chan]; comp_type val = static_cast(dst_ptr[0]) + static_cast(bias_val); dst_ptr[0] = val; } } break; }; case Format::NHWCD4: { dtype* bias_ptr = bias.compatible_ptr(); dtype* dst_ptr = dst.compatible_ptr(); for (size_t n = 0; n < dst.layout[0]; n++) { for (size_t h = 0; h < dst.layout[1]; h++) { for (size_t cb = 0; cb < dst.layout[2]; cb++) { for (size_t w = 0; w < dst.layout[3]; w++) { for (size_t i = 0; i < 4; i++) { auto ptr = dst_ptr + n * dst.layout.stride[0] + h * dst.layout.stride[1] + cb * dst.layout.stride[2] + w * dst.layout.stride[3] + i * dst.layout.stride[4]; comp_type val = static_cast(ptr[0]) + static_cast( bias_ptr[cb * 4 + i]); ptr[0] = val; } } } } } break; }; default: megdnn_assert_internal(0); } } } } // namespace convolution } // namespace naive } // namespace megdnn // vim: syntax=cpp.doxygen