/** * \file src/tensorrt/test/make_trt_net.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/opr/blas.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/plugin/profiler.h" #include "megbrain/test/helper.h" #include "megbrain/utils/debug.h" #if MGB_ENABLE_TENSOR_RT #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #include "make_trt_net.h" #include "megbrain/tensorrt/tensorrt_opr.h" #include #include using namespace mgb; using namespace opr; using namespace nvinfer1; intl::SimpleTensorRTNetwork::SimpleTensorRTNetwork() { host_x = gen({5, 23, 28, 28}); host_w = gen({32, 23, 3, 3}); host_b = gen({1, 32, 1, 1}); graph = ComputingGraph::make(); x = Host2DeviceCopy::make(*graph, host_x); auto w = Host2DeviceCopy::make(*graph, host_w), b = Host2DeviceCopy::make(*graph, host_b), y0 = opr::Convolution::make(x, w); y = y0 + b; } std::pair intl::SimpleTensorRTNetwork:: create_trt_network(bool has_batch_dim) { CompNode::load("xpu0").activate(); Weights wt_filter{DataType::kFLOAT, nullptr, 0}, wt_bias{DataType::kFLOAT, nullptr, 0}; wt_filter.type = DataType::kFLOAT; wt_bias.type = DataType::kFLOAT; wt_filter.values = host_w->raw_ptr(); wt_bias.values = host_b->raw_ptr(); wt_filter.count = host_w->shape().total_nr_elems(); wt_bias.count = host_b->shape().total_nr_elems(); auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); #if NV_TENSOR_RT_VERSION >= 6001 nvinfer1::NetworkDefinitionCreationFlags flags; ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); if (has_batch_dim) flags = 1 << static_cast( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); auto network = builder->createNetworkV2(flags); #else auto network = builder->createNetwork(); #endif nvinfer1::ITensor* data; #if NV_TENSOR_RT_VERSION >= 6001 if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, Dims4{5, 23, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, Dims3{23, 28, 28}); } { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); data->setAllowedFormats(formats); } #else if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, DimsNCHW{5, 23, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, DimsCHW{23, 28, 28}); } #endif mgb_assert(data != nullptr, "data is invalid"); auto conv1 = network->addConvolution(*data, 32, DimsHW{3, 3}, wt_filter, wt_bias); mgb_assert(conv1 != nullptr, "conv1 is invalid"); conv1->setStride(DimsHW{1, 1}); conv1->getOutput(0)->setName("prob"); network->markOutput(*conv1->getOutput(0)); #if NV_TENSOR_RT_VERSION >= 6001 { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); conv1->getOutput(0)->setAllowedFormats(formats); } #endif return std::make_pair(builder, network); } intl::BatchedTensorRTNetwork::BatchedTensorRTNetwork() { host_x = gen({23, 28, 28}); graph = ComputingGraph::make(); x = Host2DeviceCopy::make(*graph, host_x); opr::Reduce::Param param1{Reduce::Mode::SUM, 0, Reduce::Param::DataType::DEFAULT}; opr::Reduce::Param param2{Reduce::Mode::SUM, 1, Reduce::Param::DataType::DEFAULT}; auto y0 = opr::Reduce::make(x, param1); auto y1 = opr::Reduce::make(y0, param2); TensorShape tshp{1, 28}; y = opr::Reshape::make(y1, tshp); } std::pair intl::BatchedTensorRTNetwork:: create_trt_network(bool has_batch_dim) { CompNode::load("xpu0").activate(); auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); #if NV_TENSOR_RT_VERSION >= 6001 nvinfer1::NetworkDefinitionCreationFlags flags; ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); if (has_batch_dim) flags = 1 << static_cast( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); auto network = builder->createNetworkV2(flags); #else auto network = builder->createNetwork(); #endif nvinfer1::ITensor* data; #if NV_TENSOR_RT_VERSION >= 6001 if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, Dims4{1, 23, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, Dims3{23, 28, 28}); } { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); data->setAllowedFormats(formats); } #else if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, DimsNCHW{1, 23, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, DimsCHW{23, 28, 28}); } #endif mgb_assert(data != nullptr, "data is invalid"); auto reduce1 = network->addReduce(*data, nvinfer1::ReduceOperation::kSUM, 3, false); mgb_assert(reduce1 != nullptr, "reduce1 is invalid"); reduce1->getOutput(0)->setName("prob"); network->markOutput(*reduce1->getOutput(0)); #if NV_TENSOR_RT_VERSION >= 6001 { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); reduce1->getOutput(0)->setAllowedFormats(formats); } #endif return std::make_pair(builder, network); } intl::SimpleQuantizedTensorRTNetwork::SimpleQuantizedTensorRTNetwork() { host_x = range_gen({32, 8, 28, 28}); host_w = weight_gen({8, 8, 3, 3}); host_b = range_gen({1, 8, 1, 1}); { void* w_ptr = host_w->raw_ptr(); float* ptr = reinterpret_cast(w_ptr); ptr[0] = -127 * 1.1f; ptr[1] = 127 * 1.1f; } graph = ComputingGraph::make(); auto mkvar = [this](const char* name, const std::shared_ptr& host_ts, const DType& dtype) { return opr::TypeCvt::make( opr::Host2DeviceCopy::make(*graph, host_ts).rename(name), dtype); }; auto mkcvar = [this](const char* name, const std::shared_ptr& host_ts, const DType& dtype) { return opr::TypeCvt::make( opr::SharedDeviceTensor::make(*graph, *host_ts).rename(name), dtype); }; x = mkvar("x", host_x, dtype::Float32()); quantized_x = mkvar("quantized_x", host_x, dtype::QuantizedS8(1.2f)); auto float_w = mkcvar("float_w", host_w, dtype::Float32()), float_b = mkcvar("float_b", host_b, dtype::Float32()), w = opr::TypeCvt::make(float_w, dtype::QuantizedS8(1.1f)), b = opr::TypeCvt::make(float_b, dtype::QuantizedS32(1.2f * 1.1f)); { auto xshp = opr::GetVarShape::make(quantized_x); auto cv = [this](int v) { return quantized_x.make_scalar(v); }; auto sub = [&xshp, &cv](int idx) { return opr::IndexAt::make(xshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); quantized_x = opr::Reshape::make(quantized_x, tshp); quantized_x = opr::Dimshuffle::make(quantized_x, {0, 1, 3, 4, 2}); } { auto wshp = opr::GetVarShape::make(w); auto cv = [&w](int v) { return w.make_scalar(v); }; auto sub = [&wshp, &cv](int idx) { return opr::IndexAt::make(wshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); w = opr::Reshape::make(w, tshp); w = opr::Dimshuffle::make(w, {0, 1, 3, 4, 2}); } { auto bshp = opr::GetVarShape::make(b); auto cv = [&b](int v) { return b.make_scalar(v); }; auto sub = [&bshp, &cv](int idx) { return opr::IndexAt::make(bshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0); b = opr::Reshape::make(b, tshp); b = opr::Dimshuffle::make(b, {0, 1, 3, 4, 2}); } opr::ConvBias::Param param; param.format = opr::ConvBias::Param::Format::NCHW4; param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = 1; quantized_y = opr::ConvBias::make( quantized_x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(1.1f)}); param.format = opr::ConvBias::Param::Format::NCHW; y = opr::ConvBias::make( x, float_w, float_b, param, {}, OperatorNodeConfig{dtype::Float32()}); auto yshp = opr::GetVarShape::make(quantized_y); auto cv = [this](int v) { return quantized_y.make_scalar(v); }; auto sub = [&yshp, &cv](int idx) { return opr::IndexAt::make(yshp, {{0, cv(idx)}}); }; auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0); quantized_y = opr::Dimshuffle::make(quantized_y, {0, 1, 4, 2, 3}); quantized_y = opr::Reshape::make(quantized_y, tshp); quantized_y = TypeCvt::make(quantized_y, dtype::Float32()); } std::pair intl:: SimpleQuantizedTensorRTNetwork::create_trt_network(bool has_batch_dim) { CompNode::load("xpu0").activate(); Weights wt_filter{DataType::kFLOAT, nullptr, 0}, wt_bias{DataType::kFLOAT, nullptr, 0}; wt_filter.type = DataType::kFLOAT; wt_bias.type = DataType::kFLOAT; wt_filter.values = host_w->raw_ptr(); wt_bias.values = host_b->raw_ptr(); wt_filter.count = host_w->shape().total_nr_elems(); wt_bias.count = host_b->shape().total_nr_elems(); auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); #if NV_TENSOR_RT_VERSION >= 6001 nvinfer1::NetworkDefinitionCreationFlags flags; ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); if (has_batch_dim) flags = 1 << static_cast( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); auto network = builder->createNetworkV2(flags); #else auto network = builder->createNetwork(); #endif nvinfer1::ITensor* data; #if NV_TENSOR_RT_VERSION >= 6001 if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, Dims4{32, 8, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, Dims3{8, 28, 28}); } { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); data->setAllowedFormats(formats); } #else if (has_batch_dim) { data = network->addInput("data", DataType::kFLOAT, DimsNCHW{32, 8, 28, 28}); } else { data = network->addInput("data", DataType::kFLOAT, DimsCHW{8, 28, 28}); } #endif data->setDynamicRange(-127.f * 1.2f, 127.f * 1.2f); mgb_assert(data != nullptr, "data is invalid"); auto add_conv = [&](const char* name, nvinfer1::ITensor* inp) { auto conv = network->addConvolution(*inp, 8, DimsHW{3, 3}, wt_filter, wt_bias); mgb_assert(conv != nullptr, "conv1 is invalid"); conv->setName(name); conv->setStride(DimsHW{1, 1}); conv->setPadding(DimsHW{1, 1}); conv->getOutput(0)->setDynamicRange(-127.f * 1.1f, 127.f * 1.1f); // conv->setPrecision(nvinfer1::DataType::kINT8); return conv->getOutput(0); }; auto out = add_conv("conv1", data); out->setName("prob"); #if NV_TENSOR_RT_VERSION >= 6001 { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); out->setAllowedFormats(formats); } #endif network->markOutput(*out); return std::make_pair(builder, network); } intl::ConcatConvTensorRTNetwork::ConcatConvTensorRTNetwork() { host_x0 = gen({5, 23, 14, 28}); host_x1 = gen({5, 23, 14, 28}); host_w = gen({32, 46, 3, 3}); host_b = gen({1, 32, 1, 1}); graph = ComputingGraph::make(); x0 = Host2DeviceCopy::make(*graph, host_x0); x1 = Host2DeviceCopy::make(*graph, host_x1); auto y0 = opr::Concat::make({x0, x1}, 1), w = Host2DeviceCopy::make(*graph, host_w), b = Host2DeviceCopy::make(*graph, host_b), y1 = opr::Convolution::make(y0, w); y = y1 + b; } std::pair intl::ConcatConvTensorRTNetwork:: create_trt_network(bool has_batch_dim) { CompNode::load("xpu0").activate(); auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); #if NV_TENSOR_RT_VERSION >= 6001 nvinfer1::NetworkDefinitionCreationFlags flags; ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); if (has_batch_dim) flags = 1 << static_cast( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); auto network = builder->createNetworkV2(flags); #else auto network = builder->createNetwork(); #endif ITensor *data0, *data1; #if NV_TENSOR_RT_VERSION >= 6001 if (has_batch_dim) { data0 = network->addInput("x0", DataType::kFLOAT, Dims4{5, 23, 14, 28}); data1 = network->addInput("x1", DataType::kFLOAT, Dims4{5, 23, 14, 28}); } else { data0 = network->addInput("x0", DataType::kFLOAT, Dims3{23, 14, 28}); data1 = network->addInput("x1", DataType::kFLOAT, Dims3{23, 14, 28}); } { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); data0->setAllowedFormats(formats); data1->setAllowedFormats(formats); } #else if (has_batch_dim) { data0 = network->addInput("x0", DataType::kFLOAT, DimsNCHW{5, 23, 14, 28}); data1 = network->addInput("x1", DataType::kFLOAT, DimsNCHW{5, 23, 14, 28}); } else { data0 = network->addInput("x0", DataType::kFLOAT, DimsCHW{23, 14, 28}); data1 = network->addInput("x1", DataType::kFLOAT, DimsCHW{23, 14, 28}); } #endif ITensor* inputTensors[] = {data0, data1}; auto concat = network->addConcatenation(inputTensors, 2); mgb_assert(concat != nullptr, "concat is null!"); concat->setName("concat0"); if (has_batch_dim) { concat->setAxis(1); } else { concat->setAxis(0); } Weights wt_filter{DataType::kFLOAT, host_w->raw_ptr(), 0}, wt_bias{DataType::kFLOAT, host_b->raw_ptr(), 0}; wt_filter.count = host_w->shape().total_nr_elems(); wt_bias.count = host_b->shape().total_nr_elems(); auto conv1 = network->addConvolution( *concat->getOutput(0), 32, DimsHW{3, 3}, wt_filter, wt_bias); mgb_assert(conv1 != nullptr, "conv1 is invalid"); conv1->setName("conv1"); conv1->setStride(DimsHW{1, 1}); conv1->getOutput(0)->setName("convOut"); network->markOutput(*conv1->getOutput(0)); #if NV_TENSOR_RT_VERSION >= 6001 { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); conv1->getOutput(0)->setAllowedFormats(formats); } #endif return std::make_pair(builder, network); } intl::ReshapeConcatTensorRTNetwork::ReshapeConcatTensorRTNetwork() { host_x0 = gen({2, 2, 2, 2}); host_y0 = gen({2, 3, 2, 2}); graph = ComputingGraph::make(); x0 = Host2DeviceCopy::make(*graph, host_x0); y0 = Host2DeviceCopy::make(*graph, host_y0); auto x1 = opr::Reshape::make(x0, {2, 8, 1, 1}), y1 = opr::Reshape::make(y0, {2, 12, 1, 1}); z = opr::Concat::make({x1, y1}, 1); } std::pair intl::ReshapeConcatTensorRTNetwork:: create_trt_network(bool has_batch_dim) { initLibNvInferPlugins(&TensorRTOpr::Logger::instance(), ""); CompNode::load("xpu0").activate(); auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); #if NV_TENSOR_RT_VERSION >= 6001 nvinfer1::NetworkDefinitionCreationFlags flags; ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); if (has_batch_dim) flags = 1 << static_cast( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); auto network = builder->createNetworkV2(flags); #else auto network = builder->createNetwork(); #endif nvinfer1::ITensor *data0, *data1; #if NV_TENSOR_RT_VERSION >= 6001 if (has_batch_dim) { data0 = network->addInput("x0", DataType::kFLOAT, Dims4{2, 2, 2, 2}); data1 = network->addInput("y0", DataType::kFLOAT, Dims4{2, 3, 2, 2}); } else { data0 = network->addInput("x0", DataType::kFLOAT, Dims3{2, 2, 2}); data1 = network->addInput("y0", DataType::kFLOAT, Dims3{3, 2, 2}); } { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); data0->setAllowedFormats(formats); data1->setAllowedFormats(formats); } #else if (has_batch_dim) { data0 = network->addInput("x0", DataType::kFLOAT, DimsNCHW{2, 2, 2, 2}); data1 = network->addInput("y0", DataType::kFLOAT, DimsNCHW{2, 3, 2, 2}); } else { data0 = network->addInput("x0", DataType::kFLOAT, DimsCHW{2, 2, 2}); data1 = network->addInput("y0", DataType::kFLOAT, DimsCHW{3, 2, 2}); } #endif int axis = 1; bool ignoreBatch = false; nvinfer1::PluginField fields[2] = { nvinfer1::PluginField{"axis", &axis, nvinfer1::PluginFieldType::kINT32, 1}, nvinfer1::PluginField{ "ignoreBatch", &ignoreBatch, nvinfer1::PluginFieldType::kINT32, 1}, }; nvinfer1::PluginFieldCollection fc{2, fields}; auto creator = getPluginRegistry()->getPluginCreator("FlattenConcat_TRT", "1", ""); TensorRTUniquePtr plugin( creator->createPlugin("FlattenConcat_TRT", &fc)); ITensor* inputTensors[] = {data0, data1}; auto flt_cct = network->addPluginV2(inputTensors, 2, *plugin); mgb_assert(flt_cct != nullptr, "FlattenConcat_TRT is invalid"); network->markOutput(*flt_cct->getOutput(0)); #if NV_TENSOR_RT_VERSION >= 6001 { nvinfer1::TensorFormats formats = 1 << static_cast(nvinfer1::TensorFormat::kLINEAR); flt_cct->getOutput(0)->setAllowedFormats(formats); } #endif return std::make_pair(builder, network); } #pragma GCC diagnostic pop #endif // MGB_ENABLE_TENSOR_RT // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}