// clang-format off class AdaptivePooling : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::AdaptivePooling::Mode; using Format = ::megdnn::param::AdaptivePooling::Format; Mode mode = ::megdnn::param::AdaptivePooling::Mode::MAX; Format format = ::megdnn::param::AdaptivePooling::Format::NCHW; std::vector shape; AdaptivePooling() = default; AdaptivePooling(Mode mode_, Format format_, std::vector shape_, std::string scope_ = {}): mode(mode_), format(format_), shape(shape_) { set_scope(scope_); } AdaptivePooling(::megdnn::param::AdaptivePooling packed_param_0, std::vector shape_): mode(packed_param_0.mode), format(packed_param_0.format), shape(shape_) {} ::megdnn::param::AdaptivePooling param() const { return {mode, format}; } }; class AddAxis : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector axis; AddAxis() = default; AddAxis(std::vector axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } }; class Argmax : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; Argmax() = default; Argmax(int32_t axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } Argmax(::megdnn::param::Axis packed_param_0): axis(packed_param_0.axis) {} ::megdnn::param::Axis param() const { return {axis}; } }; class Argmin : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; Argmin() = default; Argmin(int32_t axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } Argmin(::megdnn::param::Axis packed_param_0): axis(packed_param_0.axis) {} ::megdnn::param::Axis param() const { return {axis}; } }; class Argsort : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Order = ::megdnn::param::Argsort::Order; Order order = ::megdnn::param::Argsort::Order::ASCENDING; Argsort() = default; Argsort(Order order_, std::string scope_ = {}): order(order_) { set_scope(scope_); } Argsort(::megdnn::param::Argsort packed_param_0): order(packed_param_0.order) {} ::megdnn::param::Argsort param() const { return {order}; } }; class AssertEqual : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float maxerr = 0.0001; bool verbose = false; AssertEqual() = default; AssertEqual(float maxerr_, bool verbose_, std::string scope_ = {}): maxerr(maxerr_), verbose(verbose_) { set_scope(scope_); } AssertEqual(::megdnn::param::AssertEqual packed_param_0): maxerr(packed_param_0.maxerr), verbose(packed_param_0.verbose) {} ::megdnn::param::AssertEqual param() const { return {maxerr, verbose}; } }; class AtlasRuntime : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string buf; size_t buf_size; AtlasRuntime() = default; AtlasRuntime(std::string buf_, size_t buf_size_, std::string scope_ = {}): buf(buf_), buf_size(buf_size_) { set_scope(scope_); } }; class Barrier : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: ::mgb::CompNode comp_node; uint32_t nr_outputs; Barrier() = default; Barrier(::mgb::CompNode comp_node_, uint32_t nr_outputs_, std::string scope_ = {}): comp_node(comp_node_), nr_outputs(nr_outputs_) { set_scope(scope_); } }; class BatchConvBias : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using NonlineMode = ::megdnn::param::BatchConvBias::NonlineMode; using Mode = ::megdnn::param::BatchConvBias::Mode; using Sparse = ::megdnn::param::BatchConvBias::Sparse; using Format = ::megdnn::param::BatchConvBias::Format; using ComputeMode = ::megdnn::param::BatchConvBias::ComputeMode; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; NonlineMode nonlineMode = ::megdnn::param::BatchConvBias::NonlineMode::IDENTITY; Mode mode = ::megdnn::param::BatchConvBias::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::BatchConvBias::Sparse::DENSE; Format format = ::megdnn::param::BatchConvBias::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::BatchConvBias::ComputeMode::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; ::megdnn::DType dtype; BatchConvBias() = default; BatchConvBias(NonlineMode nonlineMode_, Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, Strategy strategy_, uint64_t workspace_limit_, ::megdnn::DType dtype_, std::string scope_ = {}): nonlineMode(nonlineMode_), mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_), strategy(strategy_), workspace_limit(workspace_limit_), dtype(dtype_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } BatchConvBias(::megdnn::param::BatchConvBias packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1, ::megdnn::DType dtype_): nonlineMode(packed_param_0.nonlineMode), mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit), dtype(dtype_) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::BatchConvBias param() const { return {nonlineMode, mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class BatchNorm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using ParamDim = ::megdnn::param::BN::ParamDim; using FwdMode = ::megdnn::param::BN::FwdMode; ParamDim param_dim = ::megdnn::param::BN::ParamDim::DIM_11HW; FwdMode fwd_mode = ::megdnn::param::BN::FwdMode::TRAINING; double epsilon = 1e-4f; double avg_factor = 1.f; float scale = 1.f; float bias = 0.f; BatchNorm() = default; BatchNorm(ParamDim param_dim_, FwdMode fwd_mode_, double epsilon_, double avg_factor_, float scale_, float bias_, std::string scope_ = {}): param_dim(param_dim_), fwd_mode(fwd_mode_), epsilon(epsilon_), avg_factor(avg_factor_), scale(scale_), bias(bias_) { set_scope(scope_); } BatchNorm(::megdnn::param::BN packed_param_0): param_dim(packed_param_0.param_dim), fwd_mode(packed_param_0.fwd_mode), epsilon(packed_param_0.epsilon), avg_factor(packed_param_0.avg_factor), scale(packed_param_0.scale), bias(packed_param_0.bias) {} ::megdnn::param::BN param() const { return {param_dim, fwd_mode, epsilon, avg_factor, scale, bias}; } }; class BatchNormBackward : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using ParamDim = ::megdnn::param::BN::ParamDim; using FwdMode = ::megdnn::param::BN::FwdMode; ParamDim param_dim = ::megdnn::param::BN::ParamDim::DIM_11HW; FwdMode fwd_mode = ::megdnn::param::BN::FwdMode::TRAINING; double epsilon = 1e-4f; double avg_factor = 1.f; float scale = 1.f; float bias = 0.f; BatchNormBackward() = default; BatchNormBackward(ParamDim param_dim_, FwdMode fwd_mode_, double epsilon_, double avg_factor_, float scale_, float bias_, std::string scope_ = {}): param_dim(param_dim_), fwd_mode(fwd_mode_), epsilon(epsilon_), avg_factor(avg_factor_), scale(scale_), bias(bias_) { set_scope(scope_); } BatchNormBackward(::megdnn::param::BN packed_param_0): param_dim(packed_param_0.param_dim), fwd_mode(packed_param_0.fwd_mode), epsilon(packed_param_0.epsilon), avg_factor(packed_param_0.avg_factor), scale(packed_param_0.scale), bias(packed_param_0.bias) {} ::megdnn::param::BN param() const { return {param_dim, fwd_mode, epsilon, avg_factor, scale, bias}; } }; class BatchedIncrMeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; BatchedIncrMeshIndexing() = default; BatchedIncrMeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class BatchedMatrixMul : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using ComputeMode = ::megdnn::param::MatrixMul::ComputeMode; using Format = ::megdnn::param::MatrixMul::Format; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; bool transposeA = false; bool transposeB = false; ComputeMode compute_mode = ::megdnn::param::MatrixMul::ComputeMode::DEFAULT; Format format = ::megdnn::param::MatrixMul::Format::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; uint32_t dimA; uint32_t dimB; BatchedMatrixMul() = default; BatchedMatrixMul(bool transposeA_, bool transposeB_, ComputeMode compute_mode_, Format format_, Strategy strategy_, uint64_t workspace_limit_, uint32_t dimA_, uint32_t dimB_, std::string scope_ = {}): transposeA(transposeA_), transposeB(transposeB_), compute_mode(compute_mode_), format(format_), strategy(strategy_), workspace_limit(workspace_limit_), dimA(dimA_), dimB(dimB_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } BatchedMatrixMul(::megdnn::param::MatrixMul packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1, uint32_t dimA_, uint32_t dimB_): transposeA(packed_param_0.transposeA), transposeB(packed_param_0.transposeB), compute_mode(packed_param_0.compute_mode), format(packed_param_0.format), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit), dimA(dimA_), dimB(dimB_) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::MatrixMul param() const { return {transposeA, transposeB, compute_mode, format}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class BatchedMeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; BatchedMeshIndexing() = default; BatchedMeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class BatchedSetMeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; BatchedSetMeshIndexing() = default; BatchedSetMeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class BetaRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; size_t handle; BetaRNG() = default; BetaRNG(uint64_t seed_, size_t handle_, std::string scope_ = {}): seed(seed_), handle(handle_) { set_scope(scope_); } BetaRNG(::megdnn::param::BetaRNG packed_param_0, size_t handle_): seed(packed_param_0.seed), handle(handle_) {} ::megdnn::param::BetaRNG param() const { return {seed}; } }; class Borrow : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: ::mgb::CompNode comp_node; Borrow() = default; Borrow(::mgb::CompNode comp_node_, std::string scope_ = {}): comp_node(comp_node_) { set_scope(scope_); } }; class Broadcast : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector shape; Broadcast() = default; Broadcast(std::vector shape_, std::string scope_ = {}): shape(shape_) { set_scope(scope_); } Broadcast(::megdnn::param::Empty, std::vector shape_): shape(shape_) {} ::megdnn::param::Empty param() const { return {}; } }; class CambriconRuntime : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string buf; size_t buf_size; std::string symbol; bool tensor_dim_mutable; CambriconRuntime() = default; CambriconRuntime(std::string buf_, size_t buf_size_, std::string symbol_, bool tensor_dim_mutable_, std::string scope_ = {}): buf(buf_), buf_size(buf_size_), symbol(symbol_), tensor_dim_mutable(tensor_dim_mutable_) { set_scope(scope_); } }; class CheckNonFinite : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float scale = 1.0; CheckNonFinite() = default; CheckNonFinite(float scale_, std::string scope_ = {}): scale(scale_) { set_scope(scope_); } CheckNonFinite(::megdnn::param::CheckNonFinite packed_param_0): scale(packed_param_0.scale) {} ::megdnn::param::CheckNonFinite param() const { return {scale}; } }; class CollectiveComm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::CollectiveComm::Mode; Mode mode = ::megdnn::param::CollectiveComm::Mode::REDUCE_SUM; std::string key; uint32_t nr_devices; uint32_t rank; bool is_root; bool local_grad; std::string addr; uint32_t port; ::megdnn::DType dtype; std::string backend; std::string comp_node; CollectiveComm() = default; CollectiveComm(Mode mode_, std::string key_, uint32_t nr_devices_, uint32_t rank_, bool is_root_, bool local_grad_, std::string addr_, uint32_t port_, ::megdnn::DType dtype_, std::string backend_, std::string comp_node_, std::string scope_ = {}): mode(mode_), key(key_), nr_devices(nr_devices_), rank(rank_), is_root(is_root_), local_grad(local_grad_), addr(addr_), port(port_), dtype(dtype_), backend(backend_), comp_node(comp_node_) { set_scope(scope_); } CollectiveComm(::megdnn::param::CollectiveComm packed_param_0, std::string key_, uint32_t nr_devices_, uint32_t rank_, bool is_root_, bool local_grad_, std::string addr_, uint32_t port_, ::megdnn::DType dtype_, std::string backend_, std::string comp_node_): mode(packed_param_0.mode), key(key_), nr_devices(nr_devices_), rank(rank_), is_root(is_root_), local_grad(local_grad_), addr(addr_), port(port_), dtype(dtype_), backend(backend_), comp_node(comp_node_) {} ::megdnn::param::CollectiveComm param() const { return {mode}; } }; class Concat : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; ::mgb::CompNode comp_node; Concat() = default; Concat(int32_t axis_, ::mgb::CompNode comp_node_, std::string scope_ = {}): axis(axis_), comp_node(comp_node_) { set_scope(scope_); } Concat(::megdnn::param::Axis packed_param_0, ::mgb::CompNode comp_node_): axis(packed_param_0.axis), comp_node(comp_node_) {} ::megdnn::param::Axis param() const { return {axis}; } }; class CondTake : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: CondTake() = default; }; class ConvBias : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using NonlineMode = ::megdnn::param::ConvBias::NonlineMode; using Mode = ::megdnn::param::ConvBias::Mode; using Sparse = ::megdnn::param::ConvBias::Sparse; using Format = ::megdnn::param::ConvBias::Format; using ComputeMode = ::megdnn::param::ConvBias::ComputeMode; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; NonlineMode nonlineMode = ::megdnn::param::ConvBias::NonlineMode::IDENTITY; Mode mode = ::megdnn::param::ConvBias::Mode::CROSS_CORRELATION; Sparse sparse = ::megdnn::param::ConvBias::Sparse::DENSE; Format format = ::megdnn::param::ConvBias::Format::NCHW; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; ComputeMode compute_mode = ::megdnn::param::ConvBias::ComputeMode::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; ::megdnn::DType dtype; ConvBias() = default; ConvBias(NonlineMode nonlineMode_, Mode mode_, Sparse sparse_, Format format_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, ComputeMode compute_mode_, Strategy strategy_, uint64_t workspace_limit_, ::megdnn::DType dtype_, std::string scope_ = {}): nonlineMode(nonlineMode_), mode(mode_), sparse(sparse_), format(format_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), compute_mode(compute_mode_), strategy(strategy_), workspace_limit(workspace_limit_), dtype(dtype_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } ConvBias(::megdnn::param::ConvBias packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1, ::megdnn::DType dtype_): nonlineMode(packed_param_0.nonlineMode), mode(packed_param_0.mode), sparse(packed_param_0.sparse), format(packed_param_0.format), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), compute_mode(packed_param_0.compute_mode), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit), dtype(dtype_) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::ConvBias param() const { return {nonlineMode, mode, sparse, format, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, compute_mode}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class Convolution : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; Convolution() = default; Convolution(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, Strategy strategy_, uint64_t workspace_limit_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_), strategy(strategy_), workspace_limit(workspace_limit_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } Convolution(::megdnn::param::Convolution packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class Convolution3D : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution3D::Mode; using Sparse = ::megdnn::param::Convolution3D::Sparse; using DataType = ::megdnn::param::Convolution3D::DataType; using Format = ::megdnn::param::Convolution3D::Format; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Convolution3D::Mode::CROSS_CORRELATION; uint32_t pad_d = 0; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_d = 1; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_d = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution3D::Sparse::DENSE; DataType data_type = ::megdnn::param::Convolution3D::DataType::FLOAT; Format format = ::megdnn::param::Convolution3D::Format::NCDHW; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; Convolution3D() = default; Convolution3D(Mode mode_, uint32_t pad_d_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_d_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_d_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, DataType data_type_, Format format_, Strategy strategy_, uint64_t workspace_limit_, std::string scope_ = {}): mode(mode_), pad_d(pad_d_), pad_h(pad_h_), pad_w(pad_w_), stride_d(stride_d_), stride_h(stride_h_), stride_w(stride_w_), dilate_d(dilate_d_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), data_type(data_type_), format(format_), strategy(strategy_), workspace_limit(workspace_limit_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } Convolution3D(::megdnn::param::Convolution3D packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1): mode(packed_param_0.mode), pad_d(packed_param_0.pad_d), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_d(packed_param_0.stride_d), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_d(packed_param_0.dilate_d), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), data_type(packed_param_0.data_type), format(packed_param_0.format), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Convolution3D param() const { return {mode, pad_d, pad_h, pad_w, stride_d, stride_h, stride_w, dilate_d, dilate_h, dilate_w, sparse, data_type, format}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class Convolution3DBackwardData : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution3D::Mode; using Sparse = ::megdnn::param::Convolution3D::Sparse; using DataType = ::megdnn::param::Convolution3D::DataType; using Format = ::megdnn::param::Convolution3D::Format; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Convolution3D::Mode::CROSS_CORRELATION; uint32_t pad_d = 0; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_d = 1; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_d = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution3D::Sparse::DENSE; DataType data_type = ::megdnn::param::Convolution3D::DataType::FLOAT; Format format = ::megdnn::param::Convolution3D::Format::NCDHW; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; Convolution3DBackwardData() = default; Convolution3DBackwardData(Mode mode_, uint32_t pad_d_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_d_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_d_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, DataType data_type_, Format format_, Strategy strategy_, uint64_t workspace_limit_, std::string scope_ = {}): mode(mode_), pad_d(pad_d_), pad_h(pad_h_), pad_w(pad_w_), stride_d(stride_d_), stride_h(stride_h_), stride_w(stride_w_), dilate_d(dilate_d_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), data_type(data_type_), format(format_), strategy(strategy_), workspace_limit(workspace_limit_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } Convolution3DBackwardData(::megdnn::param::Convolution3D packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1): mode(packed_param_0.mode), pad_d(packed_param_0.pad_d), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_d(packed_param_0.stride_d), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_d(packed_param_0.dilate_d), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), data_type(packed_param_0.data_type), format(packed_param_0.format), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Convolution3D param() const { return {mode, pad_d, pad_h, pad_w, stride_d, stride_h, stride_w, dilate_d, dilate_h, dilate_w, sparse, data_type, format}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class ConvolutionBackwardData : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; ::megdnn::DType dtype; ConvolutionBackwardData() = default; ConvolutionBackwardData(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, Strategy strategy_, uint64_t workspace_limit_, ::megdnn::DType dtype_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_), strategy(strategy_), workspace_limit(workspace_limit_), dtype(dtype_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } ConvolutionBackwardData(::megdnn::param::Convolution packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1, ::megdnn::DType dtype_): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit), dtype(dtype_) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class Copy : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: ::mgb::CompNode comp_node; Copy() = default; Copy(::mgb::CompNode comp_node_, std::string scope_ = {}): comp_node(comp_node_) { set_scope(scope_); } }; class Correlation : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Format = ::megdnn::param::Correlation::Format; Format format = ::megdnn::param::Correlation::Format::NCHW; uint32_t kernel_size = 1; uint32_t max_displacement = 1; uint32_t stride1 = 1; uint32_t stride2 = 1; uint32_t pad_size = 0; bool is_multiply = true; Correlation() = default; Correlation(Format format_, uint32_t kernel_size_, uint32_t max_displacement_, uint32_t stride1_, uint32_t stride2_, uint32_t pad_size_, bool is_multiply_, std::string scope_ = {}): format(format_), kernel_size(kernel_size_), max_displacement(max_displacement_), stride1(stride1_), stride2(stride2_), pad_size(pad_size_), is_multiply(is_multiply_) { set_scope(scope_); } Correlation(::megdnn::param::Correlation packed_param_0): format(packed_param_0.format), kernel_size(packed_param_0.kernel_size), max_displacement(packed_param_0.max_displacement), stride1(packed_param_0.stride1), stride2(packed_param_0.stride2), pad_size(packed_param_0.pad_size), is_multiply(packed_param_0.is_multiply) {} ::megdnn::param::Correlation param() const { return {format, kernel_size, max_displacement, stride1, stride2, pad_size, is_multiply}; } }; class Cumsum : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 2147483647; bool exclusive = true; bool reverse = false; Cumsum() = default; Cumsum(int32_t axis_, bool exclusive_, bool reverse_, std::string scope_ = {}): axis(axis_), exclusive(exclusive_), reverse(reverse_) { set_scope(scope_); } Cumsum(::megdnn::param::Cumsum packed_param_0): axis(packed_param_0.axis), exclusive(packed_param_0.exclusive), reverse(packed_param_0.reverse) {} ::megdnn::param::Cumsum param() const { return {axis, exclusive, reverse}; } }; class CvtColor : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::CvtColor::Mode; Mode mode = ::megdnn::param::CvtColor::Mode::RGB2GRAY; CvtColor() = default; CvtColor(Mode mode_, std::string scope_ = {}): mode(mode_) { set_scope(scope_); } CvtColor(::megdnn::param::CvtColor packed_param_0): mode(packed_param_0.mode) {} ::megdnn::param::CvtColor param() const { return {mode}; } }; class DeformableConv : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; DeformableConv() = default; DeformableConv(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, Strategy strategy_, uint64_t workspace_limit_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_), strategy(strategy_), workspace_limit(workspace_limit_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } DeformableConv(::megdnn::param::Convolution packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class DeformablePSROIPooling : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: bool no_trans = true; float spatial_scale = 1; float trans_std = 1; uint32_t pooled_h = 1; uint32_t pooled_w = 1; uint32_t part_size = 1; uint32_t sample_per_part = 1; DeformablePSROIPooling() = default; DeformablePSROIPooling(bool no_trans_, float spatial_scale_, float trans_std_, uint32_t pooled_h_, uint32_t pooled_w_, uint32_t part_size_, uint32_t sample_per_part_, std::string scope_ = {}): no_trans(no_trans_), spatial_scale(spatial_scale_), trans_std(trans_std_), pooled_h(pooled_h_), pooled_w(pooled_w_), part_size(part_size_), sample_per_part(sample_per_part_) { set_scope(scope_); } DeformablePSROIPooling(::megdnn::param::DeformablePSROIPooling packed_param_0): no_trans(packed_param_0.no_trans), spatial_scale(packed_param_0.spatial_scale), trans_std(packed_param_0.trans_std), pooled_h(packed_param_0.pooled_h), pooled_w(packed_param_0.pooled_w), part_size(packed_param_0.part_size), sample_per_part(packed_param_0.sample_per_part) {} ::megdnn::param::DeformablePSROIPooling param() const { return {no_trans, spatial_scale, trans_std, pooled_h, pooled_w, part_size, sample_per_part}; } }; class Diag : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t k = 0; Diag() = default; Diag(int32_t k_, std::string scope_ = {}): k(k_) { set_scope(scope_); } Diag(::megdnn::param::Diag packed_param_0): k(packed_param_0.k) {} ::megdnn::param::Diag param() const { return {k}; } }; class Dimshuffle : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector pattern; Dimshuffle() = default; Dimshuffle(std::vector pattern_, std::string scope_ = {}): pattern(pattern_) { set_scope(scope_); } }; class Dot : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: Dot() = default; Dot(::megdnn::param::Empty) {} ::megdnn::param::Empty param() const { return {}; } }; class Dropout : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float drop_prob = 0; uint64_t seed = 0; size_t handle; Dropout() = default; Dropout(float drop_prob_, uint64_t seed_, size_t handle_, std::string scope_ = {}): drop_prob(drop_prob_), seed(seed_), handle(handle_) { set_scope(scope_); } Dropout(::megdnn::param::Dropout packed_param_0, size_t handle_): drop_prob(packed_param_0.drop_prob), seed(packed_param_0.seed), handle(handle_) {} ::megdnn::param::Dropout param() const { return {drop_prob, seed}; } }; class Elemwise : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Elemwise::Mode; Mode mode = ::megdnn::param::Elemwise::Mode::RELU; Elemwise() = default; Elemwise(Mode mode_, std::string scope_ = {}): mode(mode_) { set_scope(scope_); } Elemwise(::megdnn::param::Elemwise packed_param_0): mode(packed_param_0.mode) {} ::megdnn::param::Elemwise param() const { return {mode}; } }; template <> struct ToStringTrait { std::string operator()(Elemwise::Mode e) const { switch (e) { case Elemwise::Mode::RELU: return "RELU"; case Elemwise::Mode::ABS: return "ABS"; case Elemwise::Mode::ACOS: return "ACOS"; case Elemwise::Mode::ASIN: return "ASIN"; case Elemwise::Mode::CEIL: return "CEIL"; case Elemwise::Mode::COS: return "COS"; case Elemwise::Mode::EXP: return "EXP"; case Elemwise::Mode::EXPM1: return "EXPM1"; case Elemwise::Mode::FLOOR: return "FLOOR"; case Elemwise::Mode::LOG: return "LOG"; case Elemwise::Mode::LOG1P: return "LOG1P"; case Elemwise::Mode::NEGATE: return "NEGATE"; case Elemwise::Mode::SIGMOID: return "SIGMOID"; case Elemwise::Mode::SIN: return "SIN"; case Elemwise::Mode::TANH: return "TANH"; case Elemwise::Mode::ABS_GRAD: return "ABS_GRAD"; case Elemwise::Mode::ADD: return "ADD"; case Elemwise::Mode::FLOOR_DIV: return "FLOOR_DIV"; case Elemwise::Mode::MAX: return "MAX"; case Elemwise::Mode::MIN: return "MIN"; case Elemwise::Mode::MOD: return "MOD"; case Elemwise::Mode::MUL: return "MUL"; case Elemwise::Mode::POW: return "POW"; case Elemwise::Mode::SIGMOID_GRAD: return "SIGMOID_GRAD"; case Elemwise::Mode::SUB: return "SUB"; case Elemwise::Mode::SWITCH_GT0: return "SWITCH_GT0"; case Elemwise::Mode::TANH_GRAD: return "TANH_GRAD"; case Elemwise::Mode::TRUE_DIV: return "TRUE_DIV"; case Elemwise::Mode::LOG_SUM_EXP: return "LOG_SUM_EXP"; case Elemwise::Mode::LT: return "LT"; case Elemwise::Mode::LEQ: return "LEQ"; case Elemwise::Mode::EQ: return "EQ"; case Elemwise::Mode::SHL: return "SHL"; case Elemwise::Mode::SHR: return "SHR"; case Elemwise::Mode::COND_LEQ_MOV: return "COND_LEQ_MOV"; case Elemwise::Mode::FUSE_MUL_ADD3: return "FUSE_MUL_ADD3"; case Elemwise::Mode::FUSE_MUL_ADD4: return "FUSE_MUL_ADD4"; case Elemwise::Mode::FUSE_ADD_RELU: return "FUSE_ADD_RELU"; case Elemwise::Mode::FUSE_ADD_SIGMOID: return "FUSE_ADD_SIGMOID"; case Elemwise::Mode::FUSE_ADD_TANH: return "FUSE_ADD_TANH"; case Elemwise::Mode::FAST_TANH: return "FAST_TANH"; case Elemwise::Mode::FAST_TANH_GRAD: return "FAST_TANH_GRAD"; case Elemwise::Mode::ROUND: return "ROUND"; case Elemwise::Mode::RMULH: return "RMULH"; case Elemwise::Mode::ATAN2: return "ATAN2"; case Elemwise::Mode::ERF: return "ERF"; case Elemwise::Mode::ERFINV: return "ERFINV"; case Elemwise::Mode::ERFC: return "ERFC"; case Elemwise::Mode::ERFCINV: return "ERFCINV"; case Elemwise::Mode::H_SWISH: return "H_SWISH"; case Elemwise::Mode::H_SWISH_GRAD: return "H_SWISH_GRAD"; case Elemwise::Mode::FUSE_ADD_H_SWISH: return "FUSE_ADD_H_SWISH"; case Elemwise::Mode::NOT: return "NOT"; case Elemwise::Mode::AND: return "AND"; case Elemwise::Mode::OR: return "OR"; case Elemwise::Mode::XOR: return "XOR"; case Elemwise::Mode::SILU: return "SILU"; case Elemwise::Mode::SILU_GRAD: return "SILU_GRAD"; case Elemwise::Mode::GELU: return "GELU"; case Elemwise::Mode::GELU_GRAD: return "GELU_GRAD"; case Elemwise::Mode::COND_LT_MOV: return "COND_LT_MOV"; case Elemwise::Mode::NEQ: return "NEQ"; case Elemwise::Mode::ISNAN: return "ISNAN"; case Elemwise::Mode::ISINF: return "ISINF"; case Elemwise::Mode::SINH: return "SINH"; case Elemwise::Mode::COSH: return "COSH"; case Elemwise::Mode::ASINH: return "ASINH"; case Elemwise::Mode::ACOSH: return "ACOSH"; case Elemwise::Mode::ATANH: return "ATANH"; case Elemwise::Mode::TAN: return "TAN"; case Elemwise::Mode::ASINH_GRAD: return "ASINH_GRAD"; case Elemwise::Mode::ACOSH_GRAD: return "ACOSH_GRAD"; case Elemwise::Mode::ATANH_GRAD: return "ATANH_GRAD"; case Elemwise::Mode::PRELU: return "PRELU"; case Elemwise::Mode::CLIP: return "CLIP"; case Elemwise::Mode::PRELU_GRAD: return "PRELU_GRAD"; case Elemwise::Mode::SOFTPLUS: return "SOFTPLUS"; case Elemwise::Mode::SOFTPLUS_GRAD: return "SOFTPLUS_GRAD"; case Elemwise::Mode::RELU6: return "RELU6"; case Elemwise::Mode::RELU6_GRAD: return "RELU6_GRAD"; case Elemwise::Mode::HSIGMOID: return "HSIGMOID"; case Elemwise::Mode::HSIGMOID_GRAD: return "HSIGMOID_GRAD"; case Elemwise::Mode::LOGSIGMOID: return "LOGSIGMOID"; case Elemwise::Mode::SQRT: return "SQRT"; case Elemwise::Mode::SQUARE: return "SQUARE"; case Elemwise::Mode::SIGN: return "SIGN"; default: return "Elemwise::Mode::Unknown"; } } }; class ElemwiseMultiType : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::ElemwiseMultiType::Mode; Mode mode = ::megdnn::param::ElemwiseMultiType::Mode::FUSE_MUL_ADD3_INT16x32x32x32; ::megdnn::DType dtype; ElemwiseMultiType() = default; ElemwiseMultiType(Mode mode_, ::megdnn::DType dtype_, std::string scope_ = {}): mode(mode_), dtype(dtype_) { set_scope(scope_); } ElemwiseMultiType(::megdnn::param::ElemwiseMultiType packed_param_0, ::megdnn::DType dtype_): mode(packed_param_0.mode), dtype(dtype_) {} ::megdnn::param::ElemwiseMultiType param() const { return {mode}; } }; template <> struct ToStringTrait { std::string operator()(ElemwiseMultiType::Mode e) const { switch (e) { case ElemwiseMultiType::Mode::FUSE_MUL_ADD3_INT16x32x32x32: return "FUSE_MUL_ADD3_INT16x32x32x32"; case ElemwiseMultiType::Mode::FUSE_MUL_ADD3_IXxF32xF32xI8: return "FUSE_MUL_ADD3_IXxF32xF32xI8"; case ElemwiseMultiType::Mode::ROUND_SHR_SATURATE_IXxI8xI8: return "ROUND_SHR_SATURATE_IXxI8xI8"; case ElemwiseMultiType::Mode::FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT16x16x16x8: return "FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT16x16x16x8"; case ElemwiseMultiType::Mode::FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT32x32x32x8: return "FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT32x32x32x8"; case ElemwiseMultiType::Mode::ROUND_SHR_SATURATE_IXxI8xI16: return "ROUND_SHR_SATURATE_IXxI8xI16"; case ElemwiseMultiType::Mode::QADD: return "QADD"; case ElemwiseMultiType::Mode::QFUSE_ADD_RELU: return "QFUSE_ADD_RELU"; case ElemwiseMultiType::Mode::QMUL: return "QMUL"; case ElemwiseMultiType::Mode::QMIN: return "QMIN"; case ElemwiseMultiType::Mode::QMAX: return "QMAX"; case ElemwiseMultiType::Mode::QSUB: return "QSUB"; case ElemwiseMultiType::Mode::QTRUE_DIV: return "QTRUE_DIV"; case ElemwiseMultiType::Mode::QFUSE_ADD_SIGMOID: return "QFUSE_ADD_SIGMOID"; case ElemwiseMultiType::Mode::QFUSE_ADD_TANH: return "QFUSE_ADD_TANH"; case ElemwiseMultiType::Mode::QRELU: return "QRELU"; case ElemwiseMultiType::Mode::QABS: return "QABS"; case ElemwiseMultiType::Mode::QSIGMOID: return "QSIGMOID"; case ElemwiseMultiType::Mode::QEXP: return "QEXP"; case ElemwiseMultiType::Mode::QTANH: return "QTANH"; case ElemwiseMultiType::Mode::QFUSE_MUL_ADD3: return "QFUSE_MUL_ADD3"; case ElemwiseMultiType::Mode::QFAST_TANH: return "QFAST_TANH"; case ElemwiseMultiType::Mode::QNEGATE: return "QNEGATE"; case ElemwiseMultiType::Mode::QACOS: return "QACOS"; case ElemwiseMultiType::Mode::QASIN: return "QASIN"; case ElemwiseMultiType::Mode::QCEIL: return "QCEIL"; case ElemwiseMultiType::Mode::QCOS: return "QCOS"; case ElemwiseMultiType::Mode::QEXPM1: return "QEXPM1"; case ElemwiseMultiType::Mode::QFLOOR: return "QFLOOR"; case ElemwiseMultiType::Mode::QLOG: return "QLOG"; case ElemwiseMultiType::Mode::QLOG1P: return "QLOG1P"; case ElemwiseMultiType::Mode::QSIN: return "QSIN"; case ElemwiseMultiType::Mode::QROUND: return "QROUND"; case ElemwiseMultiType::Mode::QERF: return "QERF"; case ElemwiseMultiType::Mode::QERFINV: return "QERFINV"; case ElemwiseMultiType::Mode::QERFC: return "QERFC"; case ElemwiseMultiType::Mode::QERFCINV: return "QERFCINV"; case ElemwiseMultiType::Mode::QABS_GRAD: return "QABS_GRAD"; case ElemwiseMultiType::Mode::QFLOOR_DIV: return "QFLOOR_DIV"; case ElemwiseMultiType::Mode::QMOD: return "QMOD"; case ElemwiseMultiType::Mode::QSIGMOID_GRAD: return "QSIGMOID_GRAD"; case ElemwiseMultiType::Mode::QSWITCH_GT0: return "QSWITCH_GT0"; case ElemwiseMultiType::Mode::QTANH_GRAD: return "QTANH_GRAD"; case ElemwiseMultiType::Mode::QLT: return "QLT"; case ElemwiseMultiType::Mode::QLEQ: return "QLEQ"; case ElemwiseMultiType::Mode::QEQ: return "QEQ"; case ElemwiseMultiType::Mode::QPOW: return "QPOW"; case ElemwiseMultiType::Mode::QLOG_SUM_EXP: return "QLOG_SUM_EXP"; case ElemwiseMultiType::Mode::QFAST_TANH_GRAD: return "QFAST_TANH_GRAD"; case ElemwiseMultiType::Mode::QATAN2: return "QATAN2"; case ElemwiseMultiType::Mode::QCOND_LEQ_MOV: return "QCOND_LEQ_MOV"; case ElemwiseMultiType::Mode::QH_SWISH: return "QH_SWISH"; case ElemwiseMultiType::Mode::QFUSE_ADD_H_SWISH: return "QFUSE_ADD_H_SWISH"; case ElemwiseMultiType::Mode::QH_SWISH_GRAD: return "QH_SWISH_GRAD"; case ElemwiseMultiType::Mode::FUSE_MUL_ADD3_INT16xF32xF32xF32: return "FUSE_MUL_ADD3_INT16xF32xF32xF32"; case ElemwiseMultiType::Mode::MUL_INT16xF32xF32: return "MUL_INT16xF32xF32"; case ElemwiseMultiType::Mode::FUSE_MUL_ADD3_UINT8xF32xF32xF32: return "FUSE_MUL_ADD3_UINT8xF32xF32xF32"; case ElemwiseMultiType::Mode::QCOND_LT_MOV: return "QCOND_LT_MOV"; case ElemwiseMultiType::Mode::EQ: return "EQ"; case ElemwiseMultiType::Mode::NEQ: return "NEQ"; case ElemwiseMultiType::Mode::LT: return "LT"; case ElemwiseMultiType::Mode::LEQ: return "LEQ"; case ElemwiseMultiType::Mode::ISNAN: return "ISNAN"; case ElemwiseMultiType::Mode::ISINF: return "ISINF"; default: return "ElemwiseMultiType::Mode::Unknown"; } } }; class ExternOpr : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> output_shapes; std::string name; std::string data; size_t data_len; std::vector<::megdnn::DType> output_dtypes; ExternOpr() = default; ExternOpr(std::vector> output_shapes_, std::string name_, std::string data_, size_t data_len_, std::vector<::megdnn::DType> output_dtypes_, std::string scope_ = {}): output_shapes(output_shapes_), name(name_), data(data_), data_len(data_len_), output_dtypes(output_dtypes_) { set_scope(scope_); } }; class Eye : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t k = 0; ::megdnn::DType dtype = megdnn::DType::from_enum(megdnn::DTypeEnum::Float32); ::mgb::CompNode comp_node; Eye() = default; Eye(int32_t k_, ::megdnn::DType dtype_, ::mgb::CompNode comp_node_, std::string scope_ = {}): k(k_), dtype(dtype_), comp_node(comp_node_) { set_scope(scope_); } }; class FakeQuant : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t qmin = -2147483648; int32_t qmax = 2147483647; FakeQuant() = default; FakeQuant(int32_t qmin_, int32_t qmax_, std::string scope_ = {}): qmin(qmin_), qmax(qmax_) { set_scope(scope_); } FakeQuant(::megdnn::param::FakeQuant packed_param_0): qmin(packed_param_0.qmin), qmax(packed_param_0.qmax) {} ::megdnn::param::FakeQuant param() const { return {qmin, qmax}; } }; class FastpathCopy : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: FastpathCopy() = default; }; class Fill : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float value = 0; ::megdnn::DType dtype; ::mgb::CompNode comp_node; Fill() = default; Fill(float value_, ::megdnn::DType dtype_, ::mgb::CompNode comp_node_, std::string scope_ = {}): value(value_), dtype(dtype_), comp_node(comp_node_) { set_scope(scope_); } Fill(::megdnn::param::Fill packed_param_0, ::megdnn::DType dtype_, ::mgb::CompNode comp_node_): value(packed_param_0.value), dtype(dtype_), comp_node(comp_node_) {} ::megdnn::param::Fill param() const { return {value}; } }; class FillLike : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float value = 0; ::mgb::CompNode comp_node; FillLike() = default; FillLike(float value_, ::mgb::CompNode comp_node_, std::string scope_ = {}): value(value_), comp_node(comp_node_) { set_scope(scope_); } FillLike(::megdnn::param::Fill packed_param_0, ::mgb::CompNode comp_node_): value(packed_param_0.value), comp_node(comp_node_) {} ::megdnn::param::Fill param() const { return {value}; } }; class GammaRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; size_t handle; GammaRNG() = default; GammaRNG(uint64_t seed_, size_t handle_, std::string scope_ = {}): seed(seed_), handle(handle_) { set_scope(scope_); } GammaRNG(::megdnn::param::GammaRNG packed_param_0, size_t handle_): seed(packed_param_0.seed), handle(handle_) {} ::megdnn::param::GammaRNG param() const { return {seed}; } }; class GaussianRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; float mean = 0; float std = 1; ::megdnn::DType dtype = megdnn::DType::from_enum(megdnn::DTypeEnum::Float32); size_t handle; GaussianRNG() = default; GaussianRNG(uint64_t seed_, float mean_, float std_, ::megdnn::DType dtype_, size_t handle_, std::string scope_ = {}): seed(seed_), mean(mean_), std(std_), dtype(dtype_), handle(handle_) { set_scope(scope_); } }; class GeneralNorm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: bool affine = true; float eps = 1e-5f; uint64_t axis_start = 0; uint64_t axis_end = 0; GeneralNorm() = default; GeneralNorm(bool affine_, float eps_, uint64_t axis_start_, uint64_t axis_end_, std::string scope_ = {}): affine(affine_), eps(eps_), axis_start(axis_start_), axis_end(axis_end_) { set_scope(scope_); } GeneralNorm(::megdnn::param::GeneralNorm packed_param_0): affine(packed_param_0.affine), eps(packed_param_0.eps), axis_start(packed_param_0.axis_start), axis_end(packed_param_0.axis_end) {} ::megdnn::param::GeneralNorm param() const { return {affine, eps, axis_start, axis_end}; } }; class GetVarShape : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = ::megdnn::param::OptionalAxisV1::INVALID_AXIS; GetVarShape() = default; GetVarShape(int32_t axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } GetVarShape(::megdnn::param::OptionalAxisV1 packed_param_0): axis(packed_param_0.axis) {} ::megdnn::param::OptionalAxisV1 param() const { return {axis}; } }; class GroupLocal : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; GroupLocal() = default; GroupLocal(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_) { set_scope(scope_); } GroupLocal(::megdnn::param::Convolution packed_param_0): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode) {} ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } }; class GroupNorm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Format = ::megdnn::param::GroupNorm::Format; bool affine = true; float eps = 1e-5f; uint32_t group = 1; Format format = ::megdnn::param::GroupNorm::Format::NCHW; GroupNorm() = default; GroupNorm(bool affine_, float eps_, uint32_t group_, Format format_, std::string scope_ = {}): affine(affine_), eps(eps_), group(group_), format(format_) { set_scope(scope_); } GroupNorm(::megdnn::param::GroupNorm packed_param_0): affine(packed_param_0.affine), eps(packed_param_0.eps), group(packed_param_0.group), format(packed_param_0.format) {} ::megdnn::param::GroupNorm param() const { return {affine, eps, group, format}; } }; class Identity : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: Identity() = default; }; class Images2Neibs : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; uint32_t window_h = 3; uint32_t window_w = 3; Images2Neibs() = default; Images2Neibs(uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, uint32_t window_h_, uint32_t window_w_, std::string scope_ = {}): pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), window_h(window_h_), window_w(window_w_) { set_scope(scope_); } Images2Neibs(::megdnn::param::Images2Neibs packed_param_0): pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), window_h(packed_param_0.window_h), window_w(packed_param_0.window_w) {} ::megdnn::param::Images2Neibs param() const { return {pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, window_h, window_w}; } }; class IncrMeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; IncrMeshIndexing() = default; IncrMeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class IncrSubtensor : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; IncrSubtensor() = default; IncrSubtensor(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class IndexingIncrMultiAxisVec : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; IndexingIncrMultiAxisVec() = default; IndexingIncrMultiAxisVec(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class IndexingMultiAxisVec : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; IndexingMultiAxisVec() = default; IndexingMultiAxisVec(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class IndexingOneHot : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; int32_t ndim; IndexingOneHot() = default; IndexingOneHot(int32_t axis_, int32_t ndim_, std::string scope_ = {}): axis(axis_), ndim(ndim_) { set_scope(scope_); } IndexingOneHot(::megdnn::param::Axis packed_param_0, int32_t ndim_): axis(packed_param_0.axis), ndim(ndim_) {} ::megdnn::param::Axis param() const { return {axis}; } }; class IndexingSetMultiAxisVec : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; IndexingSetMultiAxisVec() = default; IndexingSetMultiAxisVec(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class IndexingSetOneHot : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; int32_t ndim; IndexingSetOneHot() = default; IndexingSetOneHot(int32_t axis_, int32_t ndim_, std::string scope_ = {}): axis(axis_), ndim(ndim_) { set_scope(scope_); } IndexingSetOneHot(::megdnn::param::Axis packed_param_0, int32_t ndim_): axis(packed_param_0.axis), ndim(ndim_) {} ::megdnn::param::Axis param() const { return {axis}; } }; class InplaceAdd : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: InplaceAdd() = default; InplaceAdd(::megdnn::param::Empty) {} ::megdnn::param::Empty param() const { return {}; } }; class InstanceNorm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Format = ::megdnn::param::GroupNorm::Format; bool affine = true; float eps = 1e-5f; uint32_t group = 1; Format format = ::megdnn::param::GroupNorm::Format::NCHW; InstanceNorm() = default; InstanceNorm(bool affine_, float eps_, uint32_t group_, Format format_, std::string scope_ = {}): affine(affine_), eps(eps_), group(group_), format(format_) { set_scope(scope_); } InstanceNorm(::megdnn::param::GroupNorm packed_param_0): affine(packed_param_0.affine), eps(packed_param_0.eps), group(packed_param_0.group), format(packed_param_0.format) {} ::megdnn::param::GroupNorm param() const { return {affine, eps, group, format}; } }; class LAMBUpdate : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float beta_1 = 1.f; float beta_2 = 1.f; float step = 1.f; float lr = 1.f; float weight_decay = 1.f; float eps = 1.f; bool bias_correction = true; bool always_adapt = false; LAMBUpdate() = default; LAMBUpdate(float beta_1_, float beta_2_, float step_, float lr_, float weight_decay_, float eps_, bool bias_correction_, bool always_adapt_, std::string scope_ = {}): beta_1(beta_1_), beta_2(beta_2_), step(step_), lr(lr_), weight_decay(weight_decay_), eps(eps_), bias_correction(bias_correction_), always_adapt(always_adapt_) { set_scope(scope_); } LAMBUpdate(::megdnn::param::LAMBUpdate packed_param_0): beta_1(packed_param_0.beta_1), beta_2(packed_param_0.beta_2), step(packed_param_0.step), lr(packed_param_0.lr), weight_decay(packed_param_0.weight_decay), eps(packed_param_0.eps), bias_correction(packed_param_0.bias_correction), always_adapt(packed_param_0.always_adapt) {} ::megdnn::param::LAMBUpdate param() const { return {beta_1, beta_2, step, lr, weight_decay, eps, bias_correction, always_adapt}; } }; class LRN : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint32_t n = 5; float k = 2.f; float alpha = 1e-4f; float beta = 0.75f; LRN() = default; LRN(uint32_t n_, float k_, float alpha_, float beta_, std::string scope_ = {}): n(n_), k(k_), alpha(alpha_), beta(beta_) { set_scope(scope_); } LRN(::megdnn::param::LRN packed_param_0): n(packed_param_0.n), k(packed_param_0.k), alpha(packed_param_0.alpha), beta(packed_param_0.beta) {} ::megdnn::param::LRN param() const { return {n, k, alpha, beta}; } }; class LSQ : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t qmin = -2147483648; int32_t qmax = 2147483647; LSQ() = default; LSQ(int32_t qmin_, int32_t qmax_, std::string scope_ = {}): qmin(qmin_), qmax(qmax_) { set_scope(scope_); } LSQ(::megdnn::param::LSQ packed_param_0): qmin(packed_param_0.qmin), qmax(packed_param_0.qmax) {} ::megdnn::param::LSQ param() const { return {qmin, qmax}; } }; class LSTM : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using FwdMode = ::megdnn::param::LSTM::FwdMode; uint32_t num_layers = 1; bool bidirectional = false; bool bias = true; uint32_t hidden_size = 128; uint32_t proj_size = 0; float dropout = 0.f; FwdMode fwd_mode = ::megdnn::param::LSTM::FwdMode::TRAINING; LSTM() = default; LSTM(uint32_t num_layers_, bool bidirectional_, bool bias_, uint32_t hidden_size_, uint32_t proj_size_, float dropout_, FwdMode fwd_mode_, std::string scope_ = {}): num_layers(num_layers_), bidirectional(bidirectional_), bias(bias_), hidden_size(hidden_size_), proj_size(proj_size_), dropout(dropout_), fwd_mode(fwd_mode_) { set_scope(scope_); } LSTM(::megdnn::param::LSTM packed_param_0): num_layers(packed_param_0.num_layers), bidirectional(packed_param_0.bidirectional), bias(packed_param_0.bias), hidden_size(packed_param_0.hidden_size), proj_size(packed_param_0.proj_size), dropout(packed_param_0.dropout), fwd_mode(packed_param_0.fwd_mode) {} ::megdnn::param::LSTM param() const { return {num_layers, bidirectional, bias, hidden_size, proj_size, dropout, fwd_mode}; } }; class LSTMCell : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: LSTMCell() = default; LSTMCell(::megdnn::param::Empty) {} ::megdnn::param::Empty param() const { return {}; } }; class LayerNorm : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: bool affine = true; float eps = 1e-5f; uint64_t normalized_dim = 1; uint64_t normalized_size = 1; LayerNorm() = default; LayerNorm(bool affine_, float eps_, uint64_t normalized_dim_, uint64_t normalized_size_, std::string scope_ = {}): affine(affine_), eps(eps_), normalized_dim(normalized_dim_), normalized_size(normalized_size_) { set_scope(scope_); } LayerNorm(::megdnn::param::LayerNorm packed_param_0): affine(packed_param_0.affine), eps(packed_param_0.eps), normalized_dim(packed_param_0.normalized_dim), normalized_size(packed_param_0.normalized_size) {} ::megdnn::param::LayerNorm param() const { return {affine, eps, normalized_dim, normalized_size}; } }; class Linspace : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: bool endpoint = true; ::mgb::CompNode comp_node; Linspace() = default; Linspace(bool endpoint_, ::mgb::CompNode comp_node_, std::string scope_ = {}): endpoint(endpoint_), comp_node(comp_node_) { set_scope(scope_); } Linspace(::megdnn::param::Linspace packed_param_0, ::mgb::CompNode comp_node_): endpoint(packed_param_0.endpoint), comp_node(comp_node_) {} ::megdnn::param::Linspace param() const { return {endpoint}; } }; class MagicMindRuntime : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string buf; size_t buf_size; MagicMindRuntime() = default; MagicMindRuntime(std::string buf_, size_t buf_size_, std::string scope_ = {}): buf(buf_), buf_size(buf_size_) { set_scope(scope_); } }; class MaskedFill : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float value = 0; MaskedFill() = default; MaskedFill(float value_, std::string scope_ = {}): value(value_) { set_scope(scope_); } MaskedFill(::megdnn::param::Fill packed_param_0): value(packed_param_0.value) {} ::megdnn::param::Fill param() const { return {value}; } }; class MatrixInverse : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: MatrixInverse() = default; MatrixInverse(::megdnn::param::Empty) {} ::megdnn::param::Empty param() const { return {}; } }; class MatrixMul : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using ComputeMode = ::megdnn::param::MatrixMul::ComputeMode; using Format = ::megdnn::param::MatrixMul::Format; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; bool transposeA = false; bool transposeB = false; ComputeMode compute_mode = ::megdnn::param::MatrixMul::ComputeMode::DEFAULT; Format format = ::megdnn::param::MatrixMul::Format::DEFAULT; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; uint32_t dimA; uint32_t dimB; MatrixMul() = default; MatrixMul(bool transposeA_, bool transposeB_, ComputeMode compute_mode_, Format format_, Strategy strategy_, uint64_t workspace_limit_, uint32_t dimA_, uint32_t dimB_, std::string scope_ = {}): transposeA(transposeA_), transposeB(transposeB_), compute_mode(compute_mode_), format(format_), strategy(strategy_), workspace_limit(workspace_limit_), dimA(dimA_), dimB(dimB_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } MatrixMul(::megdnn::param::MatrixMul packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1, uint32_t dimA_, uint32_t dimB_): transposeA(packed_param_0.transposeA), transposeB(packed_param_0.transposeB), compute_mode(packed_param_0.compute_mode), format(packed_param_0.format), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit), dimA(dimA_), dimB(dimB_) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::MatrixMul param() const { return {transposeA, transposeB, compute_mode, format}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class MeshGrid : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string indexing; MeshGrid() = default; MeshGrid(std::string indexing_, std::string scope_ = {}): indexing(indexing_) { set_scope(scope_); } }; class MeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; MeshIndexing() = default; MeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class MultiHeadAttn : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using AttnMaskType = ::megdnn::param::MultiHeadAttn::AttnMaskType; using TensorCombinationType = ::megdnn::param::MultiHeadAttn::TensorCombinationType; uint32_t num_heads = 1; uint32_t embeding_size = 0; uint32_t k_size = 0; uint32_t v_size = 0; uint32_t qproj_size = 0; uint32_t kproj_size = 0; uint32_t vproj_size = 0; uint32_t oproj_size = 0; bool qbias = false; bool kbias = false; bool vbias = false; bool obias = false; float sm_scaler = 1.f; uint32_t input_order = 0; AttnMaskType attn_mask_type = ::megdnn::param::MultiHeadAttn::AttnMaskType::NO_MASK; TensorCombinationType tensor_combination_type = ::megdnn::param::MultiHeadAttn::TensorCombinationType::NONE; bool add_zero_attn = false; bool need_weights = false; bool reslink = false; bool training = true; uint64_t seed = 0; float attn_prob = 0.f; float out_prob = 0.f; size_t handle; MultiHeadAttn() = default; MultiHeadAttn(uint32_t num_heads_, uint32_t embeding_size_, uint32_t k_size_, uint32_t v_size_, uint32_t qproj_size_, uint32_t kproj_size_, uint32_t vproj_size_, uint32_t oproj_size_, bool qbias_, bool kbias_, bool vbias_, bool obias_, float sm_scaler_, uint32_t input_order_, AttnMaskType attn_mask_type_, TensorCombinationType tensor_combination_type_, bool add_zero_attn_, bool need_weights_, bool reslink_, bool training_, uint64_t seed_, float attn_prob_, float out_prob_, size_t handle_, std::string scope_ = {}): num_heads(num_heads_), embeding_size(embeding_size_), k_size(k_size_), v_size(v_size_), qproj_size(qproj_size_), kproj_size(kproj_size_), vproj_size(vproj_size_), oproj_size(oproj_size_), qbias(qbias_), kbias(kbias_), vbias(vbias_), obias(obias_), sm_scaler(sm_scaler_), input_order(input_order_), attn_mask_type(attn_mask_type_), tensor_combination_type(tensor_combination_type_), add_zero_attn(add_zero_attn_), need_weights(need_weights_), reslink(reslink_), training(training_), seed(seed_), attn_prob(attn_prob_), out_prob(out_prob_), handle(handle_) { set_scope(scope_); } MultiHeadAttn(::megdnn::param::MultiHeadAttn packed_param_0, size_t handle_): num_heads(packed_param_0.num_heads), embeding_size(packed_param_0.embeding_size), k_size(packed_param_0.k_size), v_size(packed_param_0.v_size), qproj_size(packed_param_0.qproj_size), kproj_size(packed_param_0.kproj_size), vproj_size(packed_param_0.vproj_size), oproj_size(packed_param_0.oproj_size), qbias(packed_param_0.qbias), kbias(packed_param_0.kbias), vbias(packed_param_0.vbias), obias(packed_param_0.obias), sm_scaler(packed_param_0.sm_scaler), input_order(packed_param_0.input_order), attn_mask_type(packed_param_0.attn_mask_type), tensor_combination_type(packed_param_0.tensor_combination_type), add_zero_attn(packed_param_0.add_zero_attn), need_weights(packed_param_0.need_weights), reslink(packed_param_0.reslink), training(packed_param_0.training), seed(packed_param_0.seed), attn_prob(packed_param_0.attn_prob), out_prob(packed_param_0.out_prob), handle(handle_) {} ::megdnn::param::MultiHeadAttn param() const { return {num_heads, embeding_size, k_size, v_size, qproj_size, kproj_size, vproj_size, oproj_size, qbias, kbias, vbias, obias, sm_scaler, input_order, attn_mask_type, tensor_combination_type, add_zero_attn, need_weights, reslink, training, seed, attn_prob, out_prob}; } }; class NMSKeep : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: float iou_thresh; uint32_t max_output; NMSKeep() = default; NMSKeep(float iou_thresh_, uint32_t max_output_, std::string scope_ = {}): iou_thresh(iou_thresh_), max_output(max_output_) { set_scope(scope_); } }; class NvOf : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint32_t precision = 1; NvOf() = default; NvOf(uint32_t precision_, std::string scope_ = {}): precision(precision_) { set_scope(scope_); } NvOf(::megdnn::param::NvOf packed_param_0): precision(packed_param_0.precision) {} ::megdnn::param::NvOf param() const { return {precision}; } }; class Padding : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using PaddingMode = ::megdnn::param::Padding::PaddingMode; uint32_t front_offset_dim0 = 0; uint32_t front_offset_dim1 = 0; uint32_t front_offset_dim2 = 0; uint32_t front_offset_dim3 = 0; uint32_t front_offset_dim4 = 0; uint32_t front_offset_dim5 = 0; uint32_t front_offset_dim6 = 0; uint32_t back_offset_dim0 = 0; uint32_t back_offset_dim1 = 0; uint32_t back_offset_dim2 = 0; uint32_t back_offset_dim3 = 0; uint32_t back_offset_dim4 = 0; uint32_t back_offset_dim5 = 0; uint32_t back_offset_dim6 = 0; float padding_val = 0; PaddingMode padding_mode = ::megdnn::param::Padding::PaddingMode::CONSTANT; Padding() = default; Padding(uint32_t front_offset_dim0_, uint32_t front_offset_dim1_, uint32_t front_offset_dim2_, uint32_t front_offset_dim3_, uint32_t front_offset_dim4_, uint32_t front_offset_dim5_, uint32_t front_offset_dim6_, uint32_t back_offset_dim0_, uint32_t back_offset_dim1_, uint32_t back_offset_dim2_, uint32_t back_offset_dim3_, uint32_t back_offset_dim4_, uint32_t back_offset_dim5_, uint32_t back_offset_dim6_, float padding_val_, PaddingMode padding_mode_, std::string scope_ = {}): front_offset_dim0(front_offset_dim0_), front_offset_dim1(front_offset_dim1_), front_offset_dim2(front_offset_dim2_), front_offset_dim3(front_offset_dim3_), front_offset_dim4(front_offset_dim4_), front_offset_dim5(front_offset_dim5_), front_offset_dim6(front_offset_dim6_), back_offset_dim0(back_offset_dim0_), back_offset_dim1(back_offset_dim1_), back_offset_dim2(back_offset_dim2_), back_offset_dim3(back_offset_dim3_), back_offset_dim4(back_offset_dim4_), back_offset_dim5(back_offset_dim5_), back_offset_dim6(back_offset_dim6_), padding_val(padding_val_), padding_mode(padding_mode_) { set_scope(scope_); } Padding(::megdnn::param::Padding packed_param_0): front_offset_dim0(packed_param_0.front_offset_dim0), front_offset_dim1(packed_param_0.front_offset_dim1), front_offset_dim2(packed_param_0.front_offset_dim2), front_offset_dim3(packed_param_0.front_offset_dim3), front_offset_dim4(packed_param_0.front_offset_dim4), front_offset_dim5(packed_param_0.front_offset_dim5), front_offset_dim6(packed_param_0.front_offset_dim6), back_offset_dim0(packed_param_0.back_offset_dim0), back_offset_dim1(packed_param_0.back_offset_dim1), back_offset_dim2(packed_param_0.back_offset_dim2), back_offset_dim3(packed_param_0.back_offset_dim3), back_offset_dim4(packed_param_0.back_offset_dim4), back_offset_dim5(packed_param_0.back_offset_dim5), back_offset_dim6(packed_param_0.back_offset_dim6), padding_val(packed_param_0.padding_val), padding_mode(packed_param_0.padding_mode) {} ::megdnn::param::Padding param() const { return {front_offset_dim0, front_offset_dim1, front_offset_dim2, front_offset_dim3, front_offset_dim4, front_offset_dim5, front_offset_dim6, back_offset_dim0, back_offset_dim1, back_offset_dim2, back_offset_dim3, back_offset_dim4, back_offset_dim5, back_offset_dim6, padding_val, padding_mode}; } }; class ParamPackConcat : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector offsets; ParamPackConcat() = default; ParamPackConcat(std::vector offsets_, std::string scope_ = {}): offsets(offsets_) { set_scope(scope_); } }; class ParamPackSplit : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector offsets; std::vector> shapes; ParamPackSplit() = default; ParamPackSplit(std::vector offsets_, std::vector> shapes_, std::string scope_ = {}): offsets(offsets_), shapes(shapes_) { set_scope(scope_); } }; class PermutationRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; ::megdnn::DType dtype = megdnn::DType::from_enum(megdnn::DTypeEnum::Int32); size_t handle; PermutationRNG() = default; PermutationRNG(uint64_t seed_, ::megdnn::DType dtype_, size_t handle_, std::string scope_ = {}): seed(seed_), dtype(dtype_), handle(handle_) { set_scope(scope_); } }; class PixelShuffle : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t factor; PixelShuffle() = default; PixelShuffle(int32_t factor_, std::string scope_ = {}): factor(factor_) { set_scope(scope_); } }; class PixelShuffleBackward : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t factor; PixelShuffleBackward() = default; PixelShuffleBackward(int32_t factor_, std::string scope_ = {}): factor(factor_) { set_scope(scope_); } }; class PoissonRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; size_t handle; PoissonRNG() = default; PoissonRNG(uint64_t seed_, size_t handle_, std::string scope_ = {}): seed(seed_), handle(handle_) { set_scope(scope_); } PoissonRNG(::megdnn::param::PoissonRNG packed_param_0, size_t handle_): seed(packed_param_0.seed), handle(handle_) {} ::megdnn::param::PoissonRNG param() const { return {seed}; } }; class Pooling : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Pooling::Mode; using Format = ::megdnn::param::Pooling::Format; using Strategy = ::megdnn::param::ExecutionPolicy::Strategy; Mode mode = ::megdnn::param::Pooling::Mode::MAX; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 2; uint32_t stride_w = 2; uint32_t window_h = 2; uint32_t window_w = 2; Format format = ::megdnn::param::Pooling::Format::NCHW; Strategy strategy = static_cast<::megdnn::param::ExecutionPolicy::Strategy>(1); uint64_t workspace_limit = 18446744073709551615ull; Pooling() = default; Pooling(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t window_h_, uint32_t window_w_, Format format_, Strategy strategy_, uint64_t workspace_limit_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), window_h(window_h_), window_w(window_w_), format(format_), strategy(strategy_), workspace_limit(workspace_limit_) { set_scope(scope_); mgb_assert(static_cast(strategy) <= uint32_t(8)); } Pooling(::megdnn::param::Pooling packed_param_0, ::megdnn::param::ExecutionPolicy packed_param_1): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), window_h(packed_param_0.window_h), window_w(packed_param_0.window_w), format(packed_param_0.format), strategy(packed_param_1.strategy), workspace_limit(packed_param_1.workspace_limit) { mgb_assert(static_cast(strategy) <= uint32_t(8)); } ::megdnn::param::Pooling param() const { return {mode, pad_h, pad_w, stride_h, stride_w, window_h, window_w, format}; } ::megdnn::param::ExecutionPolicy policy() const { return {strategy, workspace_limit}; } }; class RNN : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using NonlineMode = ::megdnn::param::RNN::NonlineMode; using FwdMode = ::megdnn::param::RNN::FwdMode; uint32_t num_layers = 1; bool bidirectional = false; bool bias = true; uint32_t hidden_size = 128; float dropout = 0.f; NonlineMode nonlineMode = ::megdnn::param::RNN::NonlineMode::IDENTITY; FwdMode fwd_mode = ::megdnn::param::RNN::FwdMode::TRAINING; RNN() = default; RNN(uint32_t num_layers_, bool bidirectional_, bool bias_, uint32_t hidden_size_, float dropout_, NonlineMode nonlineMode_, FwdMode fwd_mode_, std::string scope_ = {}): num_layers(num_layers_), bidirectional(bidirectional_), bias(bias_), hidden_size(hidden_size_), dropout(dropout_), nonlineMode(nonlineMode_), fwd_mode(fwd_mode_) { set_scope(scope_); } RNN(::megdnn::param::RNN packed_param_0): num_layers(packed_param_0.num_layers), bidirectional(packed_param_0.bidirectional), bias(packed_param_0.bias), hidden_size(packed_param_0.hidden_size), dropout(packed_param_0.dropout), nonlineMode(packed_param_0.nonlineMode), fwd_mode(packed_param_0.fwd_mode) {} ::megdnn::param::RNN param() const { return {num_layers, bidirectional, bias, hidden_size, dropout, nonlineMode, fwd_mode}; } }; class RNNCell : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using NonlineMode = ::megdnn::param::RNNCell::NonlineMode; NonlineMode nonlineMode = ::megdnn::param::RNNCell::NonlineMode::IDENTITY; RNNCell() = default; RNNCell(NonlineMode nonlineMode_, std::string scope_ = {}): nonlineMode(nonlineMode_) { set_scope(scope_); } RNNCell(::megdnn::param::RNNCell packed_param_0): nonlineMode(packed_param_0.nonlineMode) {} ::megdnn::param::RNNCell param() const { return {nonlineMode}; } }; class ROIAlign : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::ROIAlign::Mode; using Format = ::megdnn::param::ROIAlign::Format; Mode mode = ::megdnn::param::ROIAlign::Mode::MAX; Format format = ::megdnn::param::ROIAlign::Format::NCHW; float spatial_scale = 1.0; float offset = 0.0; uint32_t pooled_height = 1; uint32_t pooled_width = 1; uint32_t sample_height = 2; uint32_t sample_width = 2; ROIAlign() = default; ROIAlign(Mode mode_, Format format_, float spatial_scale_, float offset_, uint32_t pooled_height_, uint32_t pooled_width_, uint32_t sample_height_, uint32_t sample_width_, std::string scope_ = {}): mode(mode_), format(format_), spatial_scale(spatial_scale_), offset(offset_), pooled_height(pooled_height_), pooled_width(pooled_width_), sample_height(sample_height_), sample_width(sample_width_) { set_scope(scope_); } ROIAlign(::megdnn::param::ROIAlign packed_param_0): mode(packed_param_0.mode), format(packed_param_0.format), spatial_scale(packed_param_0.spatial_scale), offset(packed_param_0.offset), pooled_height(packed_param_0.pooled_height), pooled_width(packed_param_0.pooled_width), sample_height(packed_param_0.sample_height), sample_width(packed_param_0.sample_width) {} ::megdnn::param::ROIAlign param() const { return {mode, format, spatial_scale, offset, pooled_height, pooled_width, sample_height, sample_width}; } }; class ROIPooling : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::ROIPooling::Mode; Mode mode = ::megdnn::param::ROIPooling::Mode::MAX; float scale = 1.f; ROIPooling() = default; ROIPooling(Mode mode_, float scale_, std::string scope_ = {}): mode(mode_), scale(scale_) { set_scope(scope_); } ROIPooling(::megdnn::param::ROIPooling packed_param_0): mode(packed_param_0.mode), scale(packed_param_0.scale) {} ::megdnn::param::ROIPooling param() const { return {mode, scale}; } }; class Reduce : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Reduce::Mode; using DataType = ::megdnn::param::Reduce::DataType; Mode mode = ::megdnn::param::Reduce::Mode::SUM; int32_t axis = 2147483647; DataType data_type = ::megdnn::param::Reduce::DataType::DEFAULT; bool keepdim = true; Reduce() = default; Reduce(Mode mode_, int32_t axis_, DataType data_type_, bool keepdim_, std::string scope_ = {}): mode(mode_), axis(axis_), data_type(data_type_), keepdim(keepdim_) { set_scope(scope_); } Reduce(::megdnn::param::Reduce packed_param_0, bool keepdim_): mode(packed_param_0.mode), axis(packed_param_0.axis), data_type(packed_param_0.data_type), keepdim(keepdim_) {} ::megdnn::param::Reduce param() const { return {mode, axis, data_type}; } }; class RegionRestrictedConvolution : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; RegionRestrictedConvolution() = default; RegionRestrictedConvolution(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_) { set_scope(scope_); } RegionRestrictedConvolution(::megdnn::param::Convolution packed_param_0): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode) {} ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } }; class RegionRestrictedConvolutionBackwardData : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::Convolution::Mode; using Sparse = ::megdnn::param::Convolution::Sparse; using Format = ::megdnn::param::Convolution::Format; using ComputeMode = ::megdnn::param::Convolution::ComputeMode; Mode mode = ::megdnn::param::Convolution::Mode::CROSS_CORRELATION; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; Sparse sparse = ::megdnn::param::Convolution::Sparse::DENSE; Format format = ::megdnn::param::Convolution::Format::NCHW; ComputeMode compute_mode = ::megdnn::param::Convolution::ComputeMode::DEFAULT; RegionRestrictedConvolutionBackwardData() = default; RegionRestrictedConvolutionBackwardData(Mode mode_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, Sparse sparse_, Format format_, ComputeMode compute_mode_, std::string scope_ = {}): mode(mode_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), sparse(sparse_), format(format_), compute_mode(compute_mode_) { set_scope(scope_); } RegionRestrictedConvolutionBackwardData(::megdnn::param::Convolution packed_param_0): mode(packed_param_0.mode), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), sparse(packed_param_0.sparse), format(packed_param_0.format), compute_mode(packed_param_0.compute_mode) {} ::megdnn::param::Convolution param() const { return {mode, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, sparse, format, compute_mode}; } }; class Remap : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::Remap::InterpolationMode; using BorderMode = ::megdnn::param::Remap::BorderMode; using Format = ::megdnn::param::Remap::Format; InterpolationMode imode = ::megdnn::param::Remap::InterpolationMode::LINEAR; BorderMode border_type = ::megdnn::param::Remap::BorderMode::REPLICATE; Format format = ::megdnn::param::Remap::Format::NHWC; float scalar = 0.f; Remap() = default; Remap(InterpolationMode imode_, BorderMode border_type_, Format format_, float scalar_, std::string scope_ = {}): imode(imode_), border_type(border_type_), format(format_), scalar(scalar_) { set_scope(scope_); } Remap(::megdnn::param::Remap packed_param_0): imode(packed_param_0.imode), border_type(packed_param_0.border_type), format(packed_param_0.format), scalar(packed_param_0.scalar) {} ::megdnn::param::Remap param() const { return {imode, border_type, format, scalar}; } }; class RemoteRecv : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string key; std::string addr; uint32_t port; uint32_t rank_from; ::mgb::CompNode cn; std::vector shape; ::megdnn::DType dtype; std::string backend; RemoteRecv() = default; RemoteRecv(std::string key_, std::string addr_, uint32_t port_, uint32_t rank_from_, ::mgb::CompNode cn_, std::vector shape_, ::megdnn::DType dtype_, std::string backend_, std::string scope_ = {}): key(key_), addr(addr_), port(port_), rank_from(rank_from_), cn(cn_), shape(shape_), dtype(dtype_), backend(backend_) { set_scope(scope_); } }; class RemoteSend : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string key; std::string addr; uint32_t port; uint32_t rank_to; std::string backend; RemoteSend() = default; RemoteSend(std::string key_, std::string addr_, uint32_t port_, uint32_t rank_to_, std::string backend_, std::string scope_ = {}): key(key_), addr(addr_), port(port_), rank_to(rank_to_), backend(backend_) { set_scope(scope_); } }; class RemoveAxis : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector axis; RemoveAxis() = default; RemoveAxis(std::vector axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } }; class Reshape : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = ::megdnn::param::OptionalAxisV1::INVALID_AXIS; std::vector shape; Reshape() = default; Reshape(int32_t axis_, std::vector shape_, std::string scope_ = {}): axis(axis_), shape(shape_) { set_scope(scope_); } Reshape(::megdnn::param::OptionalAxisV1 packed_param_0, std::vector shape_): axis(packed_param_0.axis), shape(shape_) {} ::megdnn::param::OptionalAxisV1 param() const { return {axis}; } }; class Resize : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::Resize::InterpolationMode; using Format = ::megdnn::param::Resize::Format; InterpolationMode imode = ::megdnn::param::Resize::InterpolationMode::LINEAR; Format format = ::megdnn::param::Resize::Format::NHWC; Resize() = default; Resize(InterpolationMode imode_, Format format_, std::string scope_ = {}): imode(imode_), format(format_) { set_scope(scope_); } Resize(::megdnn::param::Resize packed_param_0): imode(packed_param_0.imode), format(packed_param_0.format) {} ::megdnn::param::Resize param() const { return {imode, format}; } }; class Resize3D : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::Resize3D::InterpolationMode; using Format = ::megdnn::param::Resize3D::Format; InterpolationMode imode = ::megdnn::param::Resize3D::InterpolationMode::LINEAR; Format format = ::megdnn::param::Resize3D::Format::NDHWC; bool align_corners = false; Resize3D() = default; Resize3D(InterpolationMode imode_, Format format_, bool align_corners_, std::string scope_ = {}): imode(imode_), format(format_), align_corners(align_corners_) { set_scope(scope_); } Resize3D(::megdnn::param::Resize3D packed_param_0): imode(packed_param_0.imode), format(packed_param_0.format), align_corners(packed_param_0.align_corners) {} ::megdnn::param::Resize3D param() const { return {imode, format, align_corners}; } }; class SVD : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: bool full_matrices = false; bool compute_uv = true; SVD() = default; SVD(bool full_matrices_, bool compute_uv_, std::string scope_ = {}): full_matrices(full_matrices_), compute_uv(compute_uv_) { set_scope(scope_); } SVD(::megdnn::param::SVD packed_param_0): full_matrices(packed_param_0.full_matrices), compute_uv(packed_param_0.compute_uv) {} ::megdnn::param::SVD param() const { return {full_matrices, compute_uv}; } }; class SetMeshIndexing : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; SetMeshIndexing() = default; SetMeshIndexing(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class SetSubtensor : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; SetSubtensor() = default; SetSubtensor(std::vector> items_, std::string scope_ = {}): items(items_) { set_scope(scope_); } }; class ShuffleRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; size_t handle; ShuffleRNG() = default; ShuffleRNG(uint64_t seed_, size_t handle_, std::string scope_ = {}): seed(seed_), handle(handle_) { set_scope(scope_); } ShuffleRNG(::megdnn::param::ShuffleRNG packed_param_0, size_t handle_): seed(packed_param_0.seed), handle(handle_) {} ::megdnn::param::ShuffleRNG param() const { return {seed}; } }; class SlidingWindowTranspose : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint32_t out_h = 0; uint32_t out_w = 0; uint32_t pad_h = 0; uint32_t pad_w = 0; uint32_t stride_h = 1; uint32_t stride_w = 1; uint32_t dilate_h = 1; uint32_t dilate_w = 1; uint32_t window_h = 3; uint32_t window_w = 3; SlidingWindowTranspose() = default; SlidingWindowTranspose(uint32_t out_h_, uint32_t out_w_, uint32_t pad_h_, uint32_t pad_w_, uint32_t stride_h_, uint32_t stride_w_, uint32_t dilate_h_, uint32_t dilate_w_, uint32_t window_h_, uint32_t window_w_, std::string scope_ = {}): out_h(out_h_), out_w(out_w_), pad_h(pad_h_), pad_w(pad_w_), stride_h(stride_h_), stride_w(stride_w_), dilate_h(dilate_h_), dilate_w(dilate_w_), window_h(window_h_), window_w(window_w_) { set_scope(scope_); } SlidingWindowTranspose(::megdnn::param::SlidingWindowTranspose packed_param_0): out_h(packed_param_0.out_h), out_w(packed_param_0.out_w), pad_h(packed_param_0.pad_h), pad_w(packed_param_0.pad_w), stride_h(packed_param_0.stride_h), stride_w(packed_param_0.stride_w), dilate_h(packed_param_0.dilate_h), dilate_w(packed_param_0.dilate_w), window_h(packed_param_0.window_h), window_w(packed_param_0.window_w) {} ::megdnn::param::SlidingWindowTranspose param() const { return {out_h, out_w, pad_h, pad_w, stride_h, stride_w, dilate_h, dilate_w, window_h, window_w}; } }; class Softmax : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = -1; Softmax() = default; Softmax(int32_t axis_, std::string scope_ = {}): axis(axis_) { set_scope(scope_); } Softmax(::megdnn::param::Softmax packed_param_0): axis(packed_param_0.axis) {} ::megdnn::param::Softmax param() const { return {axis}; } }; class Split : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis; int32_t nsections; Split() = default; Split(int32_t axis_, int32_t nsections_, std::string scope_ = {}): axis(axis_), nsections(nsections_) { set_scope(scope_); } Split(::megdnn::param::Empty, int32_t axis_, int32_t nsections_): axis(axis_), nsections(nsections_) {} ::megdnn::param::Empty param() const { return {}; } }; class Stack : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t axis = 0; ::mgb::CompNode comp_node; Stack() = default; Stack(int32_t axis_, ::mgb::CompNode comp_node_, std::string scope_ = {}): axis(axis_), comp_node(comp_node_) { set_scope(scope_); } Stack(::megdnn::param::Axis packed_param_0, ::mgb::CompNode comp_node_): axis(packed_param_0.axis), comp_node(comp_node_) {} ::megdnn::param::Axis param() const { return {axis}; } }; class Subtensor : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::vector> items; std::vector> slice_items; Subtensor() = default; Subtensor(std::vector> items_, std::vector> slice_items_, std::string scope_ = {}): items(items_), slice_items(slice_items_) { set_scope(scope_); } }; class TQT : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: int32_t qmin = -2147483648; int32_t qmax = 2147483647; TQT() = default; TQT(int32_t qmin_, int32_t qmax_, std::string scope_ = {}): qmin(qmin_), qmax(qmax_) { set_scope(scope_); } TQT(::megdnn::param::TQT packed_param_0): qmin(packed_param_0.qmin), qmax(packed_param_0.qmax) {} ::megdnn::param::TQT param() const { return {qmin, qmax}; } }; class TensorRTRuntime : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: std::string buf; size_t buf_size; TensorRTRuntime() = default; TensorRTRuntime(std::string buf_, size_t buf_size_, std::string scope_ = {}): buf(buf_), buf_size(buf_size_) { set_scope(scope_); } }; class TopK : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using Mode = ::megdnn::param::TopK::Mode; Mode mode = ::megdnn::param::TopK::Mode::KTH_ONLY; TopK() = default; TopK(Mode mode_, std::string scope_ = {}): mode(mode_) { set_scope(scope_); } TopK(::megdnn::param::TopK packed_param_0): mode(packed_param_0.mode) {} ::megdnn::param::TopK param() const { return {mode}; } }; class TypeCvt : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: ::megdnn::DType dtype; TypeCvt() = default; TypeCvt(::megdnn::DType dtype_, std::string scope_ = {}): dtype(dtype_) { set_scope(scope_); } }; class UniformRNG : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: uint64_t seed = 0; ::megdnn::DType dtype = megdnn::DType::from_enum(megdnn::DTypeEnum::Float32); size_t handle; UniformRNG() = default; UniformRNG(uint64_t seed_, ::megdnn::DType dtype_, size_t handle_, std::string scope_ = {}): seed(seed_), dtype(dtype_), handle(handle_) { set_scope(scope_); } }; class WarpAffine : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::WarpAffine::InterpolationMode; using BorderMode = ::megdnn::param::WarpAffine::BorderMode; using Format = ::megdnn::param::WarpAffine::Format; InterpolationMode imode = ::megdnn::param::WarpAffine::InterpolationMode::LINEAR; BorderMode border_mode = ::megdnn::param::WarpAffine::BorderMode::REPLICATE; float border_val = .0f; Format format = ::megdnn::param::WarpAffine::Format::NHWC; WarpAffine() = default; WarpAffine(InterpolationMode imode_, BorderMode border_mode_, float border_val_, Format format_, std::string scope_ = {}): imode(imode_), border_mode(border_mode_), border_val(border_val_), format(format_) { set_scope(scope_); } WarpAffine(::megdnn::param::WarpAffine packed_param_0): imode(packed_param_0.imode), border_mode(packed_param_0.border_mode), border_val(packed_param_0.border_val), format(packed_param_0.format) {} ::megdnn::param::WarpAffine param() const { return {imode, border_mode, border_val, format}; } }; class WarpPerspective : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::WarpPerspective::InterpolationMode; using BorderMode = ::megdnn::param::WarpPerspective::BorderMode; using Format = ::megdnn::param::WarpPerspective::Format; InterpolationMode imode = ::megdnn::param::WarpPerspective::InterpolationMode::LINEAR; BorderMode bmode = ::megdnn::param::WarpPerspective::BorderMode::REPLICATE; Format format = ::megdnn::param::WarpPerspective::Format::NCHW; float border_val = .0f; WarpPerspective() = default; WarpPerspective(InterpolationMode imode_, BorderMode bmode_, Format format_, float border_val_, std::string scope_ = {}): imode(imode_), bmode(bmode_), format(format_), border_val(border_val_) { set_scope(scope_); } WarpPerspective(::megdnn::param::WarpPerspective packed_param_0): imode(packed_param_0.imode), bmode(packed_param_0.bmode), format(packed_param_0.format), border_val(packed_param_0.border_val) {} ::megdnn::param::WarpPerspective param() const { return {imode, bmode, format, border_val}; } }; class WarpPerspectiveBackwardData : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::WarpPerspective::InterpolationMode; using BorderMode = ::megdnn::param::WarpPerspective::BorderMode; using Format = ::megdnn::param::WarpPerspective::Format; InterpolationMode imode = ::megdnn::param::WarpPerspective::InterpolationMode::LINEAR; BorderMode bmode = ::megdnn::param::WarpPerspective::BorderMode::REPLICATE; Format format = ::megdnn::param::WarpPerspective::Format::NCHW; float border_val = .0f; WarpPerspectiveBackwardData() = default; WarpPerspectiveBackwardData(InterpolationMode imode_, BorderMode bmode_, Format format_, float border_val_, std::string scope_ = {}): imode(imode_), bmode(bmode_), format(format_), border_val(border_val_) { set_scope(scope_); } WarpPerspectiveBackwardData(::megdnn::param::WarpPerspective packed_param_0): imode(packed_param_0.imode), bmode(packed_param_0.bmode), format(packed_param_0.format), border_val(packed_param_0.border_val) {} ::megdnn::param::WarpPerspective param() const { return {imode, bmode, format, border_val}; } }; class WarpPerspectiveBackwardMat : public OpDefImplBase { MGB_DYN_TYPE_OBJ_FINAL_DECL; public: using InterpolationMode = ::megdnn::param::WarpPerspective::InterpolationMode; using BorderMode = ::megdnn::param::WarpPerspective::BorderMode; using Format = ::megdnn::param::WarpPerspective::Format; InterpolationMode imode = ::megdnn::param::WarpPerspective::InterpolationMode::LINEAR; BorderMode bmode = ::megdnn::param::WarpPerspective::BorderMode::REPLICATE; Format format = ::megdnn::param::WarpPerspective::Format::NCHW; float border_val = .0f; WarpPerspectiveBackwardMat() = default; WarpPerspectiveBackwardMat(InterpolationMode imode_, BorderMode bmode_, Format format_, float border_val_, std::string scope_ = {}): imode(imode_), bmode(bmode_), format(format_), border_val(border_val_) { set_scope(scope_); } WarpPerspectiveBackwardMat(::megdnn::param::WarpPerspective packed_param_0): imode(packed_param_0.imode), bmode(packed_param_0.bmode), format(packed_param_0.format), border_val(packed_param_0.border_val) {} ::megdnn::param::WarpPerspective param() const { return {imode, bmode, format, border_val}; } }; // clang-format on