pdef('Empty') pdef('Axis').add_fields('int32', 'axis', 0) (pdef('Convolution', version=0, is_legacy=True). add_enum('Mode', 'CROSS_CORRELATION = 0', 'CONVOLUTION = 1'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1 ). add_enum('DataType', Doc('FLOAT = 0', 'input/output both float32/float16'), 'INT8x8x16 = 1', 'INT8x8x32 = 2', Doc('FLOAT_IO16xC32 = 3', 'input/output both float16, the internal ' 'compute is float32'), Doc('QUINT8x8x32 = 4', 'input QuantizedAsymm8, output QuantizedS32'), Doc('INT8x8xX = 5', 'input int8, output specified by tensor DType'), Doc('QUINT4x4x32 = 6', 'input QuantizedAsymm4, output QuantizedS32'), name_field='data_type'). add_enum('Sparse', Doc('DENSE = 0', 'dense convolution: filter shape should be ' '[oc, ic, spatial...] if format is NCHW, ' '[oc, spatial..., ic] if format is NHWC'), Doc('GROUP = 1', 'group convolution: filter shape should be ' '[group, oc_per_group, ic_per_group, spatial...] if format is NCHW, ' '[group, oc_per_group, spatial..., ic_per_group] if format is NHWC') ). add_enum(Doc('Format', 'convolution data/filter/output format; see ' ':class:`RelayoutFormat` for more details'), 'NCHW = 0', 'NHWC = 1', 'NHWCD4 = 2', 'NCHW4 = 3', 'NCHW8 = 4', 'NCHW32 = 5', 'NCHW88 = 6', 'NCHW44 = 7','NCHW44_DOT = 8', Doc('NCHW_WINOGRAD = 9', 'NCHW layout with weights tranformed by winograd'), Doc('NCHW88_WINOGRAD = 10', 'NCHW88 layout with weights tranformed by winograd'), Doc('NCHW44_WINOGRAD = 11', 'NCHW44 layout with weights tranformed by winograd'), Doc('NCHW4_NCHW32 = 12', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'), Doc('NCHW32_NCHW4 = 13', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'), Doc('NCHW4_NCHW = 14', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'), Doc('NHWC_NCHW = 15', 'NHWC_NCHW means input tensors are nhwc layout, ' 'output tensor is nchw layout'), Doc('NHWC_NCHW4_IC_SMALL = 16', 'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, ' 'output tensor is nchw4 layout, padding c=4'), Doc('NCHW_NCHW4_IC_SMALL = 17', 'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, ' 'output tensor is nchw4 layout, padding c=4'), Doc('CHWN4 = 18', 'CHWN4 is currently only used on Nvidia platform for fast implementation ' 'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'), Doc('NCHW4_NHWC = 19', 'NCHW4_NHWC means input tensors are nchw4 layout, output tensor is nhwc layout')) ) (pdef('Convolution', version=1, is_legacy=True). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1 ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. ' 'different combinations of intermediate result ' 'data types.'), Doc('DEFAULT = 0', 'No special requirements on the precision of ' 'intermediate results.'), Doc('FLOAT32 = 1', 'Use Float32 accumulator and intermediate result. ' 'Only supported when input and output is Float16.'), name_field='compute_mode') ) (pdef('Convolution', version=2). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1 ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum(Doc('Format', 'convolution data/filter/output format; see ' ':class:`RelayoutFormat` for more details'), 'NCHW = 0', 'NHWC = 1', 'NHWCD4 = 2', 'NCHW4 = 3', 'NCHW8 = 4', 'NCHW32 = 5', 'NCHW88 = 6', 'NCHW44 = 7','NCHW44_DOT = 8', Doc('NCHW4_NCHW32 = 9', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'), Doc('NCHW32_NCHW4 = 10', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'), Doc('NCHW4_NCHW = 11', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'), Doc('NHWC_NCHW = 12', 'NHWC_NCHW means input tensors are nhwc layout, ' 'output tensor is nchw layout'), Doc('NHWC_NCHW4_IC_SMALL = 13', 'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, ' 'output tensor is nchw4 layout, padding c=4'), Doc('NCHW_NCHW4_IC_SMALL = 14', 'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, ' 'output tensor is nchw4 layout, padding c=4'), Doc('CHWN4 = 15', 'CHWN4 is currently only used on Nvidia platform for fast implementation ' 'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'), Doc('NCHW64 = 16', 'NCHW64 is designed for convolution implementation to utilizing TensorCore ' 'instructions for 4-bit integers on Nvidia platforms'), Doc('NCHW4_NHWC = 17', 'NCHW4_NHWC means input tensors are nchw4 layout, output tensor is nhwc layout')). add_enum_alias('ComputeMode', 'ConvolutionV1',name_field='compute_mode') ) (pdef('MaskPropagate'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('kernel_h', 'kernel height'), 1, Doc('kernel_w', 'kernel width'), 1, Doc('dilate_h', 'dilate height'), 1, Doc('dilate_w', 'dilate width'), 1) ) (pdef('ConvPooling'). add_enum('Method', 'WITH_TEXTURE_OBJ = 0', 'WITH_SHARED_MEM = 1'). add_enum_alias('ConvMode', 'ConvolutionV0', 'Mode'). add_enum('PoolMode', 'AVERAGE = 0', 'MAX = 1'). add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2'). add_fields('uint32', 'pool_shape_h', 1, 'pool_shape_w', 1, 'pool_stride_h', 1, 'pool_stride_w', 1, \ 'pool_pad_h', 0, 'pool_pad_w', 0, 'conv_stride_h', 1, 'conv_stride_w', 1, 'conv_pad_h', 0, 'conv_pad_w', 0)) (pdef('ConvBias', 'legacy conv_bias', version=0, is_legacy=True). add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2', 'H_SWISH = 3'). add_enum_alias('Mode', 'ConvolutionV0'). add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1)) (pdef('ConvBias', 'active(conv(x, w) + bias)', version=1, is_legacy=True). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_enum_alias('DataType', 'ConvolutionV0', name_field='data_type'). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1) ) (pdef('ConvBias', 'active(conv(x, w) + bias)', version=2, is_legacy=True). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1). add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode') ) (pdef('ConvBias', 'active(conv(x, w) + bias)', version=3, is_legacy=True). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('output_block_size', 'detail meaning \see winograd in conv bias'), 0). add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode') ) (pdef('ConvBias', 'active(conv(x, w) + bias)', version=4). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'Convolution'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1). add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode') ) (pdef('SeparableConv'). add_enum_alias('Mode', 'ConvolutionV0'). add_enum('BorderMode', 'BORDER_REPLICATE = 0', 'BORDER_REFLECT = 1', 'BORDER_REFLECT_101 = 2','BORDER_WRAP = 3', 'BORDER_CONSTANT = 4', 'BORDER_TRANSPARENT = 5','BORDER_ISOLATED = 6'). add_fields('bool', 'is_symm_kernel', 'true'). add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1)) (pdef('Images2Neibs'). add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, 'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) (pdef('SlidingWindowTranspose'). add_fields('uint32', 'out_h', 0, 'out_w', 0, 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, 'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) (pdef('Pooling', version=0, is_legacy=True). add_enum( 'Mode', Doc('MAX = 0', 'maximum value inside pooling window'), Doc('AVERAGE = 1', 'arithmetic mean of all values inside pooling window. Padding values ' 'are taken into account and are viewed as zero'), Doc('AVERAGE_COUNT_EXCLUDE_PADDING = 2', 'arithmetic mean of all values inside pooling window. No padding is' 'used.') ). add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 2, 'stride_w', 2, 'window_h', 2, 'window_w', 2). add_enum_alias('Format', 'ConvolutionV0') ) (pdef('Pooling', version=1). add_enum_alias('Mode','PoolingV0'). add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 2, 'stride_w', 2, 'window_h', 2, 'window_w', 2). add_enum_alias('Format', 'Convolution') ) (pdef('Softmax'). add_fields('int32', 'axis', -1) ) (pdef('AdaptivePooling', version=0, is_legacy=True). add_enum_alias('Mode', 'PoolingV0'). add_enum_alias('Format', 'ConvolutionV0') ) (pdef('AdaptivePooling', version=1). add_enum_alias('Mode', 'PoolingV0'). add_enum_alias('Format', 'Convolution') ) (pdef('LRN', 'see ImageNet Classification with Deep Convolutional Neural Networks for' ' meaning of the fields'). add_fields('uint32', Doc('n', 'must be odd'), 5). add_fields('float32', 'k', '2.f', 'alpha', '1e-4f', 'beta', '0.75f') ) (pdef('BN'). add_enum( 'ParamDim', Doc('DIM_11HW = 0', 'Dim of params (Sigma, Mu) is 1 x 1 x H x W'), Doc('DIM_1CHW = 1', 'Dim of params (Sigma, Mu) is 1 x C x H x W'), Doc('DIM_1C11 = 2', 'Dim of params (Sigma, Mu) is 1 x C x 1 x 1'), Doc('DIM_111C = 3', 'Dim of params (Sigma, Mu) is 1 x 1 x 1 x C'), name_field='param_dim' ). add_enum( 'FwdMode', Doc('TRAINING = 0', 'Training phase.'), Doc('INFERENCE = 1', 'Inference phase.'), name_field='fwd_mode' ). add_fields('float64', 'epsilon', '1e-4f'). add_fields('float64', 'avg_factor', '1.f'). add_fields('float32', 'scale', '1.f'). add_fields('float32', 'bias', '0.f') ) (pdef('ROIPooling'). add_enum( 'Mode', Doc('MAX = 0', 'maximum value inside pooling window; pooling result would ' 'be 0 if pooling window is empty'), Doc('AVERAGE = 1', 'arithmetic mean of all values inside pooling window; pooling result ' 'would be 0 if pooling window is empty') ). add_fields('float32', 'scale', '1.f')) INTERP_MODES = ['NEAREST = 0', 'LINEAR = 1', 'AREA = 2', 'CUBIC = 3', 'LANCZOS4 = 4'] BORDER_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'), Doc('REFLECT = 1', 'fedcba|abcdefgh|hgfedcb'), Doc('REFLECT_101 = 2', 'gfedcb|abcdefgh|gfedcba'), Doc('WRAP = 3', 'cdefgh|abcdefgh|abcdefg'), Doc('CONSTANT = 4', 'iiiiii|abcdefgh|iiiiiii'), Doc('TRANSPARENT = 5', ''), Doc('ISOLATED = 6', '')] (pdef('WarpPerspective', version=1, is_legacy=True). add_enum('InterpolationMode', *INTERP_MODES, name_field='imode', default=1, member_alias=[(i, 'INTER_{}'.format(i)) for i in INTERP_MODES] ). add_enum('BorderMode', *BORDER_MODES, name_field='bmode', member_alias=[(i, 'BORDER_{}'.format(i)) for i in BORDER_MODES] ). add_enum_alias('Format', 'ConvolutionV0'). add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')) (pdef('WarpPerspective', version=2). add_enum_alias('InterpolationMode','WarpPerspectiveV1',name_field="imode"). add_enum_alias('BorderMode','WarpPerspectiveV1',name_field="bmode"). add_enum_alias('Format', 'Convolution'). add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')) pdef('SpatialTfGridGenerator').add_enum('Mode', 'AFFINE = 0') pdef('SpatialTfSampler').add_enum('Mode', 'BILINEAR = 0') pdef('AddUpdate').add_fields( 'float32', 'alpha', '1.f', 'beta', '1.f', 'bias', '0.f') pdef('Elemwise').add_enum( 'Mode', Doc('RELU = 0', 'unary: max(x, 0)'), Doc('ABS = 1', 'unary: abs(x)'), Doc('ACOS = 2', 'unary: acos(x)'), Doc('ASIN = 3', 'unary: asin(x)'), Doc('CEIL = 4', 'unary: ceil(x)'), Doc('COS = 5', 'unary: cos(x)'), Doc('EXP = 6', 'unary: exp(x)'), Doc('EXPM1 = 7', 'unary: numerically stable exp(x)-1'), Doc('FLOOR = 8', 'unary: floor(x)'), Doc('LOG = 9', 'unary: natural logarithm, log(x)'), Doc('LOG1P = 10', 'unary: numerically stable log(x+1)'), Doc('NEGATE = 11', 'unary: -x'), Doc('SIGMOID = 12', 'unary: 1/(1+exp(-x))'), Doc('SIN = 13', 'unary: sin(x)'), Doc('TANH = 14', 'unary: tanh(x)'), Doc('ABS_GRAD = 15', 'binary: x > 0 ? y : -y'), Doc('ADD = 16', 'binary: x + y'), Doc('FLOOR_DIV = 17', 'binary: floor(x / y)'), Doc('MAX = 18', 'binary: max(x, y)'), Doc('MIN = 19', 'binary: min(x, y)'), Doc('MOD = 20', 'binary: x % y or fmodf(x, y)'), Doc('MUL = 21', 'binary: x * y'), Doc('POW = 22', 'binary: pow(x, y)'), Doc('SIGMOID_GRAD = 23', 'binary: x * (1 - x) * y'), Doc('SUB = 24', 'binary: x - y'), Doc('SWITCH_GT0 = 25', 'binary: (x > 0) * y'), Doc('TANH_GRAD = 26', 'binary: (1 - x * x) * y'), Doc('TRUE_DIV = 27', 'binary: x / y'), Doc('LOG_SUM_EXP = 28', 'binary: numerically stable log(exp(x) + exp(y))'), Doc('LT = 29', 'binary: x < y'), Doc('LEQ = 30', 'binary: x <= y'), Doc('EQ = 31', 'binary: x == y'), Doc('SHL = 32', 'bitwise binary: x << y. ' 'Note that result is undefined if y < 0 or y >= bitwidth. Logical ' 'shift is performed for unsigned intergers, and arithmetic shift for ' 'signed ones.'), Doc('SHR = 33', 'bitwise binary: x >> y; see SHL mode for more details'), Doc('COND_LEQ_MOV = 34', 'ternary: x <= y ? z : 0'), Doc('FUSE_MUL_ADD3 = 35', 'compute ``a * b + c`` where c must either have same layout as ' 'a or b, or be a scalar'), Doc('FUSE_MUL_ADD4 = 36', 'compute ``a * A + b * B`` where a and b must have equal layout, ' 'and A and B must have equal layout. In the inputs ``b`` and ``B`` ' 'can be swapped'), Doc('FUSE_ADD_RELU = 37', 'binary: max(x+y, 0)'), Doc('FUSE_ADD_SIGMOID = 38', 'binary: 1/(1+exp(-(x+y)))'), Doc('FUSE_ADD_TANH = 39', 'binary: tanh(x+y)'), Doc('FAST_TANH = 40', 'unary: rational approximation of tanh(x)'), Doc('FAST_TANH_GRAD = 41', 'binary: grad of the rational approximation of tanh(x)'), Doc('ROUND = 42', 'unary: round(x), the nearest integer value to x, rounding ' 'halfway cases away from zero. Float only.'), Doc('RMULH = 43', 'binary: rounded higher l bits of x * y, where l is the bit ' 'length of x.'), Doc('ATAN2 = 44','binary: atan2(y,x)'), Doc('ERF = 45', 'unary: erf(x)'), Doc('ERFINV = 46', 'unary: inverse function of erf(x)'), Doc('ERFC = 47', 'unary: erfc(x)'), Doc('ERFCINV = 48', 'unary: inverse function of erfc(x)'), Doc('H_SWISH = 49', 'unary: x * clip(x + 3, 0, 6) / 6'), Doc('H_SWISH_GRAD = 50', 'binary: x < -3 ? 0 : (x > 3 ? y : (2 * x + 3) / 6 * y)'), Doc('FUSE_ADD_H_SWISH = 51', 'binary: hswish(x+y)'), Doc('NOT = 52', 'unary: !x'), Doc('AND = 53', 'binary: x && y'), Doc('OR = 54', 'binary: x || y'), Doc('XOR = 55', 'binary: x ^ y'), Doc('SILU = 56', 'unary: x / (1 + exp(-x))'), Doc('SILU_GRAD = 57', 'binary: grad(x / (1 + exp(-x))'), Doc('GELU = 58', 'unary: x Phi(x)'), Doc('GELU_GRAD = 59', 'binary: grad(x Phi(x))'), Doc('COND_LT_MOV = 60', 'ternary: x < y ? z : 0'), Doc('NEQ = 61', 'binary: x != y'), Doc('ISNAN = 62', 'unary: isnan(x)'), Doc('ISINF = 63', 'unary: isinf(x)'), Doc('SINH = 64', 'unary: sinh(x)'), Doc('COSH = 65', 'unary: cosh(x)'), Doc('ASINH = 66', 'unary: asinh(x)'), Doc('ACOSH = 67', 'unary: acosh(x)'), Doc('ATANH = 68', 'unary: atanh(x)'), Doc('TAN = 69', 'unary: tan(x)'), Doc('ASINH_GRAD = 70', 'binary: y / sqrt(x^2 + 1)'), Doc('ACOSH_GRAD = 71', 'binary: y / sqrt(x^2 - 1) (x > 1)'), Doc('ATANH_GRAD = 72', 'binary: y / (1 - x^2) (|x| < 1)'), Doc('PRELU = 73', 'binary: x > 0 ? x : x * y'), Doc('CLIP = 74', 'ternary: x <= y ? y : (x <= z ? x : z)'), Doc('PRELU_GRAD = 75', 'ternary: x > 0 ? y : y * z'), Doc('SOFTPLUS = 76', 'unary: log(1 + e^x)'), Doc('SOFTPLUS_GRAD = 77', 'binary: y * e^x / (1 + e^x)'), Doc('RELU6 = 78', 'unary: min(max(0, x), 6)'), Doc('RELU6_GRAD = 79', 'binary: x < 0 ? 0 : (x > 6 ? 0 : y)'), Doc('HSIGMOID = 80', 'unary: relu6(x + 3) / 6'), Doc('HSIGMOID_GRAD = 81', 'binary: x < -3 ? 0 : (x > 3 ? 0 : y / 6)'), Doc('LOGSIGMOID = 82', 'unary: -log(1 + e^(-x))'), Doc('SQRT = 83', 'unary: x^(1/2)'), Doc('SQUARE = 84', 'unary: x^2'), Doc('SIGN = 85', 'unary: sgn(x)'), ) pdef('ElemwiseMultiType').add_enum( 'Mode', Doc('FUSE_MUL_ADD3_INT16x32x32x32 = 0', 'compute ``a * b + c`` requiring that ``a`` be int16 and ``b`` and ' '``c`` int32, and the result is int32. This mode is optimized for ' 'the channel-broadacsted case, i.e. ``a`` has shape (A, B, C) and ' '``b`` and ``c`` have shape (1, C, 1)'), Doc('FUSE_MUL_ADD3_IXxF32xF32xI8 = 1', 'compuate ``a * b + c`` where the inputs ``a`` is an integer type ' '``b`` and ``c`` are both ``float32``, the result is ' '``int8``. This is currently only optimized for ``(1, x)`` ' 'broadcast for ``b`` and ``c``. Computation is carried in floating ' 'points and results are rounded towards zero with saturated cast to ' 'int.'), Doc('ROUND_SHR_SATURATE_IXxI8xI8 = 2', 'Compute ``a >> b``, round the result according to lower ``b`` bits ' 'of ``a``` and make a saturating conversion to int8. Where ``a`` should' ' be an integer tensor and ``b`` should be an int8 scalar.'), Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT16x16x16x8 = 3', 'Fused operation of an int16 elemwise add, an int16 rounding multiply ' 'high and an int16 to int8 rounding right shift with saturation.'), Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT32x32x32x8 = 4', 'Fused operation of an int32 elemwise add, an int32 rounding multiply ' 'high and an int32 to int8 rounding right shift with saturation.'), Doc('ROUND_SHR_SATURATE_IXxI8xI16 = 5', 'Compute ``a >> b``, round the result according to lower ``b`` bits of ' '``a``` and make a saturating conversion to int16. Where ``a`` should' ' be an integer tensor and ``b`` should be an int8 scalar.'), Doc('QADD = 6', 'Fused elemwise add two quantized int8 with specified' 'output quantized dtype'), Doc('QFUSE_ADD_RELU = 7', 'Fused elemwise add two quantized int8 followed' ' by ReLU and typecvt to specified dtype'), Doc('QMUL = 8', 'Fused elemwise multiply two quantized int8 with specified' 'output quantized dtype'), Doc('QMIN = 9', 'Fused elemwise min two quantized int8 with specified' 'output quantized dtype'), Doc('QMAX = 10', 'quantized: max(x, y), with specified output quantized dtype'), Doc('QSUB = 11', 'quantized: x - y'), Doc('QTRUE_DIV = 12', 'quantized: x / y'), Doc('QFUSE_ADD_SIGMOID = 13', 'quantized: sigmoid(x + y)'), Doc('QFUSE_ADD_TANH = 14', 'quantized: tanh(x + y)'), Doc('QRELU = 15', 'quantized: x > 0 ? x : 0'), Doc('QABS = 16', 'quantized: x > 0 ? x : -x'), Doc('QSIGMOID = 17', 'quantized: sigmoid(x)'), Doc('QEXP = 18', 'quantized: exp(x)'), Doc('QTANH = 19', 'quantized: tanh(x)'), Doc('QFUSE_MUL_ADD3 = 20', 'quantized: x * y + z'), Doc('QFAST_TANH = 21', 'quantized: fast_tanh(x)'), Doc('QNEGATE = 22', 'quantized: -x'), Doc('QACOS = 23', 'quantized: acos(x)'), Doc('QASIN = 24', 'quantized: asin(x)'), Doc('QCEIL = 25', 'quantized: ceil(x)'), Doc('QCOS = 26', 'quantized: cos(x)'), Doc('QEXPM1 = 27', 'quantized: expm1(x)'), Doc('QFLOOR = 28', 'quantized: floor(x)'), Doc('QLOG = 29', 'quantized: log(x)'), Doc('QLOG1P = 30', 'quantized: log1p(x)'), Doc('QSIN = 31', 'quantized: sin(x)'), Doc('QROUND = 32', 'quantized: round(x)'), Doc('QERF = 33', 'quantized: erf(x)'), Doc('QERFINV = 34', 'quantized: erfinv(x)'), Doc('QERFC = 35', 'quantized: erfc(x)'), Doc('QERFCINV = 36', 'quantized: erfcinv(x)'), Doc('QABS_GRAD = 37', 'quantized: abs_grad'), Doc('QFLOOR_DIV = 38', 'quantized floor_div'), Doc('QMOD = 39', 'quantized mod'), Doc('QSIGMOID_GRAD = 40', 'quantized sigmoid_grad'), Doc('QSWITCH_GT0 = 41', 'quantized switch_gt0'), Doc('QTANH_GRAD = 42', 'quantized tanh_grad'), Doc('QLT = 43', 'quantized lt'), Doc('QLEQ = 44', 'quantized leq'), Doc('QEQ = 45', 'quantized eq'), Doc('QPOW = 46', 'quantized pow'), Doc('QLOG_SUM_EXP = 47', 'quantized log_sum_exp'), Doc('QFAST_TANH_GRAD = 48', 'quantized fast_tanh_grad'), Doc('QATAN2 = 49', 'quantized atan2'), Doc('QCOND_LEQ_MOV = 50', 'quantized cond_leq_mov'), Doc('QH_SWISH = 51', 'quantized h_swish'), Doc('QFUSE_ADD_H_SWISH = 52', 'quantized h_swish(x+y)'), Doc('QH_SWISH_GRAD = 53', 'quantized h_swish_grad'), Doc('FUSE_MUL_ADD3_INT16xF32xF32xF32 = 54', 'compute ``a * b + c`` requiring that ``a`` be int16 and ``b`` and ' '``c`` float32, and the result is float32.'), Doc('MUL_INT16xF32xF32 = 55', 'compute ``a * b `` requiring that ``a`` be int16 and ``b`` float32, ' 'and the result is float32.'), Doc('FUSE_MUL_ADD3_UINT8xF32xF32xF32 = 56', 'compute ``a * b + c`` requiring that ``a`` be uint8 and ``b`` and ' '``c`` float32, and the result is float32.'), Doc('QCOND_LT_MOV = 57', 'quantized cond_lt_mov'), Doc('EQ = 58', 'eq'), Doc('NEQ = 59', 'eq'), Doc('LT = 60', 'lt'), Doc('LEQ = 61', 'leq'), Doc('ISNAN = 62', 'isnan'), Doc('ISINF = 63', 'isinf') ) pdef('PowC', 'power with constant exponent').add_fields('float32', 'exp', 0) (pdef('DctChannelSelect', '2d discrete cosine transform', version=0, is_legacy=True).add_enum_alias('Format', 'ConvolutionV0'). add_enum('FastImpl', 'NONE = 0', 'FIX_32_MASK = 1').add_fields('int32', 'dct_block_size', 8)) (pdef('DctChannelSelect', '2d discrete cosine transform', version=1).add_enum_alias('Format', 'Convolution'). add_enum_alias('FastImpl', 'DctChannelSelectV0').add_fields('int32', 'dct_block_size', 8)) (pdef('MatrixMul', version=0, is_legacy=True). add_fields('bool', 'transposeA', 'false', 'transposeB', 'false'). add_enum('DataType', Doc('FLOAT = 0', 'input/output both float32/float16'), 'INT8x8x16 = 1', 'INT8x8x32 = 2', Doc('FLOAT_IO16xC32 = 3', 'input/output both float16, the internal compute is ' 'float32'), Doc('QUINT8x8x32 = 4', 'input QuantizedAsymm8, output QuantizedS32'), Doc('QUINT4x4x32 = 5', 'input QuantizedAsymm4, output QuantizedS32'), name_field='data_type')) (pdef('MatrixMul', version=1, is_legacy=True). add_fields('bool', 'transposeA', 'false', 'transposeB', 'false'). add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. ' 'different combinations of intermediate result ' 'data types.'), Doc('DEFAULT = 0', 'No special requirements on the precision of ' 'intermediate results.'), Doc('FLOAT32 = 1', 'Use Float32 accumulator and intermediate result. ' 'Only supported when input and output is Float16.'), name_field='compute_mode')) (pdef('MatrixMul', version=2). add_fields('bool', 'transposeA', 'false', 'transposeB', 'false'). add_enum_alias('ComputeMode', 'MatrixMulV1', name_field='compute_mode'). add_enum('Format', Doc('DEFAULT = 0', 'Normal matrix mul: (M, K) x (K, N) = (M, N)'), Doc('MK4 = 1', 'Split 4 from M and K, better for neon compute:' '(M/4, K/4, 4(k), 4(m)) x (K/4, N, 4(k)). if transposeA the ' 'layout is (K/4, M/4, 4(k), 4(m)) x (K/4, N, 4(k))'), Doc('MK8 = 2', 'Split 8 from M and K, better for neon compute:' '(M/8, K/8, 8(k), 8(m)) x (K/8, N, 8(k)). if transposeA the ' 'layout is (K/8, M/8, 8(k), 8(m)) x (K/8, N, 8(k))'), Doc('MK4_DOT = 3', 'Split 4 from M and K, better for neon dotprod:' 'M/4, K/4, 4(m), 4(k)) x (K/4, N, 4(k)). if transposeA the ' 'layout is (K/4, M/4, 4(m), 4(k)) x (K/4, N, 4(k))'), Doc('N32K4_DOT = 4', 'Split 32 from N and 4 from K, better for neon gevm dotprod:' 'N/32, K/4, 32(n), 4(k)') ) ) (pdef('SVD'). add_fields('bool', Doc('full_matrices', 'Whether to compute the full-sized u and v or only the leading' ' min(m, n) singular vectors. Ignored if compute_uv is ' 'false.'), 'false', Doc('compute_uv', 'Whether the left (u) and right (v) singular vectors will be ' 'computed and outputted.'), 'true')) (pdef('Reduce', 'legacy reduce', version=0, is_legacy=True). add_enum('Mode', 'SUM = 0', Doc('SUM_SQR = 1', 'sum of x * x for each element x'), 'PRODUCT = 2', 'MIN = 3', 'MAX = 4'). add_fields('int32', Doc('axis', 'axis along which reduction is performed; if -1 is given, ' 'reduce to given target shape (only used in megbrain)'), -1)) (pdef('Reduce', 'reduce along given axis', version=1, is_legacy=True). add_enum('Mode', 'SUM = 0', Doc('SUM_SQR = 1', 'sum of x * x for each element x'), 'PRODUCT = 2', 'MIN = 3', 'MAX = 4', 'MEAN = 5'). add_fields('int32', Doc('axis', 'axis along which reduction is performed; if -1 is given, ' 'reduce to given target shape (only used in megbrain)'), -1). add_enum('DataType', Doc('DEFAULT = 0', ''' input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode. Currently, ```DEFAULT``` mode means: +--------------------+-----------------------------------+-------------------+ | Input/Output DType | Mode | Computation DType | +====================+===================================+===================+ | FLOAT32 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | FLOAT32 | +--------------------+-----------------------------------+-------------------+ | FLOAT16 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | FLOAT16 | +--------------------+-----------------------------------+-------------------+ | INT32 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | INT32 | +--------------------+-----------------------------------+-------------------+ | INT8 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | INT8 | +--------------------+-----------------------------------+-------------------+ | QuantizedS8 | MIN/MAX | QuantizedS8 | +--------------------+-----------------------------------+-------------------+ | QuantizedS8 | MEAN/SUM | QuantizedS32 | +--------------------+-----------------------------------+-------------------+ | Quantized8Asymm | MIN/MAX | Quantized8Asymm | +--------------------+-----------------------------------+-------------------+ | Quantized8Asymm | MEAN/SUM | QuantizedS32 | +--------------------+-----------------------------------+-------------------+ ''' ), Doc('FLOAT_IO16xC32 = 1', 'Deprecated. This was replaced by ' 'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'), Doc('FLOAT_O32xC32 = 2', 'compute/output both are float32'), Doc('FLOAT_O16xC32 = 3', 'compute are float32, output float16'), Doc('QUINT_I8xO32 = 4', 'input quint8, compute and output are qint32'), Doc('QINT_I8xO32 = 5', 'input qint8, compute and output are qint32'), name_field='data_type')) (pdef('Reduce', 'reduce along given axis', version=2). add_enum('Mode', 'SUM = 0', Doc('SUM_SQR = 1', 'sum of x * x for each element x'), 'PRODUCT = 2', 'MIN = 3', 'MAX = 4', 'MEAN = 5'). add_fields('int32', Doc('axis', 'axis along which reduction is performed; if INT_MAX is given, ' 'reduce to given target shape (only used in megbrain)'), (1<<31)-1). add_enum('DataType', Doc('DEFAULT = 0', ''' input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode. Currently, ```DEFAULT``` mode means: +--------------------+-----------------------------------+-------------------+ | Input/Output DType | Mode | Computation DType | +====================+===================================+===================+ | FLOAT32 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | FLOAT32 | +--------------------+-----------------------------------+-------------------+ | FLOAT16 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | FLOAT16 | +--------------------+-----------------------------------+-------------------+ | INT32 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | INT32 | +--------------------+-----------------------------------+-------------------+ | INT8 | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT | INT8 | +--------------------+-----------------------------------+-------------------+ | QuantizedS8 | MIN/MAX | QuantizedS8 | +--------------------+-----------------------------------+-------------------+ | QuantizedS8 | MEAN/SUM | QuantizedS32 | +--------------------+-----------------------------------+-------------------+ | Quantized8Asymm | MIN/MAX | Quantized8Asymm | +--------------------+-----------------------------------+-------------------+ | Quantized8Asymm | MEAN/SUM | QuantizedS32 | +--------------------+-----------------------------------+-------------------+ ''' ), Doc('FLOAT_IO16xC32 = 1', 'Deprecated. This was replaced by ' 'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'), Doc('FLOAT_O32xC32 = 2', 'compute/output both are float32'), Doc('FLOAT_O16xC32 = 3', 'compute are float32, output float16'), Doc('QUINT_I8xO32 = 4', 'input quint8, compute and output are qint32'), Doc('QINT_I8xO32 = 5', 'input qint8, compute and output are qint32'), name_field='data_type')) (pdef('Cumsum', 'calculate accumulated sum along given axis', version=0, is_legacy=True). add_fields('int32', Doc('axis', 'axis along which cumsum is performed'), -1). add_fields('bool', Doc('exclusive', 'whether the current element is taken into account'), 'true'). add_fields('bool', Doc('reverse', 'whether the cumsum is forward or backward'), 'false')) (pdef('Cumsum', 'calculate accumulated sum along given axis', version=1). add_fields('int32', Doc('axis', 'axis along which cumsum is performed, default with INT_MAX'), (1<<31)-1). add_fields('bool', Doc('exclusive', 'whether the current element is taken into account'), 'true'). add_fields('bool', Doc('reverse', 'whether the cumsum is forward or backward'), 'false')) (pdef('CondTake'). add_enum('Mode', Doc('EQ = 0', 'take if ``abs(data-val)=eps``'), Doc('LT = 2', 'take if ``dataval``'), Doc('GEQ = 5', 'take if ``data>=val``')). add_fields('float32', Doc('val', 'the value to be compared with; note that for integer ' 'data, val is also converted to int'), 0). add_fields('float32', Doc('eps', 'used for float equality comparison'), 1e-6)) pdef('Argsort').add_enum('Order', 'ASCENDING = 0', 'DESCENDING = 1') (pdef('IndexingRemap'). add_fields('bool', Doc('is_non_overlapping', 'Whether no two dst element maps to the same src element. ' 'Enabling this option can accelerate gradient operator since' ' atomic adding operations could be avoided.'), 'false')) pdef('Sleep').add_fields('float32', Doc('time', 'time to sleep in seconds'), 0) (pdef('Linspace'). add_fields('bool', Doc('endpoint', 'Whether stop is included in the generated tensor'), 'true')) (pdef('LinspaceFull'). add_fields('float64', Doc('start', 'The first val.'), 0). add_fields('float64', Doc('stop', 'The last val.'), 1). add_fields('bool', Doc('endpoint', 'Whether stop is included in the generated tensor'), 'true')) (pdef('Eye'). add_fields( 'int32', Doc('k', 'Index of the diagonal: 0 (the default) refers to the main ' 'diagonal, a positive value refers to an upper diagonal, and a ' 'negative value to a lower diagonal.'), 0). add_fields( 'dtype', Doc('dtype', 'data type of output value'), 'DTypeEnum::Float32')) (pdef('Diag'). add_fields( 'int32', Doc('k', 'Index of the diagonal: 0 (the default) refers to the main ' 'diagonal, a positive value refers to an upper diagonal, and a ' 'negative value to a lower diagonal.'), 0)) (pdef('UniformRNG', version=0, is_legacy=True). add_fields('uint64', 'seed', 0)) (pdef('UniformRNG', version=1). add_fields('uint64', 'seed', 0). add_fields( 'dtype', Doc('dtype', 'The dtype of output Tensor. Only support Float32.'), 'DTypeEnum::Float32')) (pdef('GaussianRNG', version=0, is_legacy=True). add_fields('uint64', 'seed', 0). add_fields('float32', 'mean', 0, 'std', 1)) (pdef('GaussianRNG', version=1). add_fields('uint64', 'seed', 0). add_fields('float32', 'mean', 0, 'std', 1). add_fields( 'dtype', Doc('dtype', 'The dtype of output Tensor. Only support Float32.'), 'DTypeEnum::Float32')) (pdef('GammaRNG'). add_fields('uint64', 'seed', 0)) (pdef('BetaRNG'). add_fields('uint64', 'seed', 0)) (pdef('PoissonRNG'). add_fields('uint64', 'seed', 0)) (pdef('PermutationRNG'). add_fields('uint64', 'seed', 0). add_fields( 'dtype', Doc('dtype', 'The dtype of output Tensor. Int32, Int16 and ' 'Float32 are supported.'), 'DTypeEnum::Int32')) (pdef('ShuffleRNG'). add_fields('uint64', 'seed', 0)) (pdef('Flip'). add_fields('bool', 'vertical', 'false', 'horizontal', 'false')) (pdef('Rotate') .add_fields('bool', 'clockwise', 'true')) (pdef('ROICopy') .add_fields('uint32', 'row_from', 0, 'row_to', 0, 'col_from', 0, 'col_to', 0)) (pdef('CvtColor') .add_enum('Mode', 'RGB2GRAY = 0', 'RGB2YUV = 1', 'YUV2RGB = 2', 'GRAY2RGB = 3', 'RGBA2RGB = 4', 'RGBA2BGR = 5', 'RGBA2GRAY = 6', 'RGB2BGR = 7', 'BGR2GRAY = 8', 'BGR2RGB = 9', Doc('YUV2GRAY_NV21 = 10', 'For historical reasons, referred to as YCC by opencv'), 'YUV2RGB_NV21 = 11', 'YUV2BGR_NV21 = 12', 'YUV2GRAY_NV12 = 13', 'YUV2RGB_NV12 = 14', 'YUV2BGR_NV12 = 15', 'YUV2GRAY_YV12 = 16', 'YUV2RGB_YV12 = 17', 'YUV2BGR_YV12 = 18', 'YUV2GRAY_YU12 = 19', 'YUV2RGB_YU12 = 20', 'YUV2BGR_YU12 = 21', 'YCrCb2RGB = 22', 'YCrCb2BGR = 23', Doc('BT601_YUV2RGB_NV21 = 24', 'BT601 yuv format, referred to as YUV by opencv'), 'BT601_YUV2BGR_NV21 = 25', 'BT601_YUV2RGB_NV12 = 26', 'BT601_YUV2BGR_NV12 = 27', 'BT601_YUV2RGB_YV12 = 28', 'BT601_YUV2BGR_YV12 = 29', 'BT601_YUV2RGB_YU12 = 30', 'BT601_YUV2BGR_YU12 = 31', member_alias=[('YUV2GRAY_NV21', 'BT601_YUV2GRAY_NV21'), ('YUV2GRAY_NV12', 'BT601_YUV2GRAY_NV12'), ('YUV2GRAY_YV12', 'BT601_YUV2GRAY_YV12'), ('YUV2GRAY_YU12', 'BT601_YUV2GRAY_YU12')], name_field = 'mode')) (pdef('WarpAffine', version=0, is_legacy=True) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode') .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')) (pdef('WarpAffine', version=1, is_legacy=True) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode') .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f') .add_enum_alias('Format', 'ConvolutionV0', default=1)) (pdef('WarpAffine', version=2) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode') .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f') .add_enum_alias('Format', 'Convolution', default=1)) (pdef('GaussianBlur') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode') .add_fields('uint32', 'kernel_height', 0, 'kernel_width', 0) .add_fields('float32','sigma_x', '0.f', 'sigma_y', '0.f')) (pdef('Resize', version=0, is_legacy=True) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')) (pdef('Resize', version=1, is_legacy=True) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('Format', 'ConvolutionV0', default=1)) (pdef('Resize', version=2) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('Format', 'Convolution', default=1)) (pdef('Remap', version=0,is_legacy=True) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_type') .add_enum_alias('Format', 'ConvolutionV0', default=1) .add_fields('float32', 'scalar', '0.f')) (pdef('Remap', version=1) .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode') .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_type') .add_enum_alias('Format', 'Convolution', default=1) .add_fields('float32', 'scalar', '0.f')) (pdef('Convolution3D'). add_enum('Mode', 'CROSS_CORRELATION = 0', 'CONVOLUTION = 1'). add_fields( 'uint32', Doc('pad_d', 'padding on one side on the first dimension'), 0, Doc('pad_h', 'padding on one side on the second dimension'), 0, Doc('pad_w', 'padding on one side on the third dimension'), 0, Doc('stride_d', 'kernel stride on the first dimension'), 1, Doc('stride_h', 'kernel stride on the second dimension'), 1, Doc('stride_w', 'kernel stride on the third dimension'), 1, Doc('dilate_d', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the first dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the third dimension'), 1 ). add_enum('Sparse', Doc('DENSE = 0', 'dense convolution: filter shape should be ' '[oc, ic, spatial...] if format is NCDHW, ' '[oc, spatial..., ic] if format is NDHWC'), Doc('GROUP = 1', 'group convolution: filter shape should be ' '[group, oc_per_group, ic_per_group, spatial...] if format is NCDHW, ' '[group, oc_per_group, spatial..., ic_per_group] if format is NDHWC') ). add_enum('DataType', Doc('FLOAT = 0', 'input/output both float32/float16'), Doc('FLOAT_IO16xC32 = 1', 'input/output both float16, the internal ' 'compute is float32'), name_field='data_type'). add_enum('Format', 'NCDHW = 0', 'NDHWC = 1') ) (pdef('Conv3DBias'). add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2'). add_enum_alias('Mode', 'Convolution3D'). add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0, 'stride_d', 1, 'stride_h', 1, 'stride_w', 0)) (pdef('SeparableConv3D'). add_enum_alias('Mode', 'Convolution3D'). add_enum('BorderMode', 'BORDER_REPLICATE = 0', 'BORDER_REFLECT = 1', 'BORDER_REFLECT_101 = 2','BORDER_WRAP = 3', 'BORDER_CONSTANT = 4', 'BORDER_TRANSPARENT = 5','BORDER_ISOLATED = 6'). add_fields('bool', 'is_symm_kernel', 'true'). add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0, 'stride_d', 0, 'stride_h', 1, 'stride_w', 1, 'ksize_d', 0, 'ksize_h', 3, 'ksize_w', 3, 'anchor_d', 0, 'anchor_h', 1, 'anchor_w', 1)) (pdef('TopK'). add_enum( 'Mode', Doc('KTH_ONLY = 0', "only the value of the k'th element would be computed"), Doc('VALUE_IDX_NOSORT = 1', 'all the top-k values and corresponding indices would be computed; ' 'no order is guaranteed'), Doc('VALUE_IDX_SORTED = 2', 'all the top-k values and corresponding indices sorted')) ) RELAYOUT_FORMAT_MODE_DOC = """ Relayout mode. **Naming conventions** 1. ``A_B`` means change from layout format ``A`` to ``B``. 2. ``INTER_WEIGHT_xx`` means relayout the weight for faster processing by :attr:`Convolution.Format.NHWCD4` convolutions. 3. A suffix of ``I`` means ``Image2DPack4TensorFormat`` tensor format is used for faster processing on GPUs. **Layout definitions** * ``NCHW`` layout: ``{N, C, H, W}`` * ``NHWC`` layout: ``{N, H, W, C}`` * ``NHWCD4`` layout: ``{N, H, (C + 3) / 4, W, 4}`` * ``NHWCD4I`` layout: with ``align_axis = 2`` * ``NCHW4`` layout: ``{N, C/4, H, W, 4}`` * ``NCHW88`` layout: ``{N, C/8, H, W, 8}`` * ``CHWN4`` layout: ``{C/4, H, W, N, 4}`` * ``NCHW64`` layout: ``{N, C/64, H, W, 64}`` **Float weight transformation definitions** +---------------+---------------------------------+--------------------+--------------------------------------+------+ | Sparsity Type | Input Layout | Input Req | Output Layout | Axis | +===============+=================================+====================+======================================+======+ | DENSE | ``{OC, IC, FH, FW}`` | ``OC % 4 == 0`` | ``{OC/4, FH, FW, IC, 4}`` | 3 | +---------------+---------------------------------+--------------------+--------------------------------------+------+ | GROUP | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0`` | ``{GROUP, OCPG/4, FH, FW, ICPG, 4}`` | 4 | | | | ``ICPG % 4 == 0`` | | | +---------------+---------------------------------+--------------------+--------------------------------------+------+ | CHAN | ``{GROUP, 1, 1, FH, FW}`` | ``GROUP % 4 == 0`` | ``{GROUP / 4, 1, FH ,FW, 4}`` | 1 | +---------------+---------------------------------+--------------------+--------------------------------------+------+ **Float weight transformation nchw88 definitions** +---------------+---------------------------------+--------------------+--------------------------------------+ | Sparsity Type | Input Layout | Input Req | Output Layout | +===============+=================================+====================+======================================+ | DENSE | ``{OC, IC, FH, FW}`` | ``OC % 8 == 0`` |``{OC/8, IC/8 ,FH, FW, 8(IC), 8(OC)}``| | | | ``IC % 8 == 0`` | | +---------------+---------------------------------+--------------------+--------------------------------------+ | GROUP | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 8 == 0`` | ``{GROUP, OCPG/8, ICPG/8 FH, FW, | | | | ``ICPG % 8 == 0`` | 8(ICPG), 8(OCPG)} `` | +---------------+---------------------------------+--------------------+--------------------------------------+ | CHAN | ``{GROUP, 1, 1, FH, FW}`` | ``GROUP % 8 == 0`` | ``{GROUP / 8, 1, FH ,FW, 8}`` | +---------------+---------------------------------+--------------------+--------------------------------------+ **Int8(DOT) weight transformation definitions** +---------------+---------------------------------+--------------------+------------------------------------------+------+ | Sparsity Type | Input Layout | Input Req | Output Layout | Axis | +===============+=================================+====================+==========================================+======+ | DENSE | ``{OC, IC, FH, FW}`` | ``OC % 4 == 0`` | ``{OC/4, FH, FW, IC/4, 4, 4}` | 3 | +---------------+---------------------------------+--------------------+------------------------------------------+------+ | GROUP | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0`` | ``{GROUP, OCPG/4, FH, FW, ICPG/4, 4, 4}``| 4 | | | | ``ICPG % 4 == 0`` | | | +---------------+---------------------------------+--------------------+------------------------------------------+------+ Note: the axis column means the corresponding ``align_axis`` for image format when the ``I`` suffix is present. Note: NCHW_NCHW4_WEIGHT will auto pad oc and ic, you should remove oc in later opr by seting group and oc param with NCHW4_NCHW """ (pdef('RelayoutFormat', 'Change the tensor layout format', version=0, is_legacy=True). add_enum( Doc('Mode', RELAYOUT_FORMAT_MODE_DOC), 'NHWC_NHWCD4 = 0', 'NHWCD4_NHWC = 1', 'NHWC_NHWCD4I = 2', 'NCHW_NHWCD4 = 3', 'NCHW_NHWCD4I = 4', 'NHWCD4I_NCHW = 5', 'NHWCD4_NCHW = 6', 'INTER_WEIGHT_DENSE = 7', 'INTER_WEIGHT_DENSEI = 8', 'INTER_WEIGHT_GROUP = 9', 'INTER_WEIGHT_GROUPI = 10', 'INTER_WEIGHT_CHAN = 11', 'INTER_WEIGHT_CHANI = 12', 'INTER_WEIGHT_DENSEI_DOT = 13', 'INTER_WEIGHT_GROUPI_DOT = 14', 'NCHW4_CHWN4 = 15', 'CHWN4_NCHW4 = 16', 'NCHW_NCHW88_CONV_DENSE_WEIGHT = 17', 'NCHW_NCHW88_CONV_CHAN_WEIGHT = 18', 'NCHW_NCHW88_CONV_GROUP_WEIGHT = 19', 'NCHW_NCHW88 = 20', 'NCHW88_NCHW = 21', 'NCHW_NCHW4_IC_SMALL = 22', 'NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT = 23', 'NCHW_NCHW4 = 24', 'NCHW4_NCHW = 25', 'NCHW_NCHW4_WEIGHT = 26', 'NCHW_NCHW64 = 27', 'NCHW64_NCHW = 28', 'NCHW_NHWC = 29', 'NHWC_NCHW = 30', 'NHWCD4I_NHWC = 31', ) ) (pdef('RelayoutFormat', 'Change the tensor layout format', version=1). add_enum_alias('Mode', 'RelayoutFormatV0'). add_fields('uint32', 'oc', '0'). add_fields('uint32', 'group', '1') ) (pdef('SeparableFilter', version=0, is_legacy=True). add_enum_alias('Format', 'ConvolutionV0'). add_enum_alias('BorderMode', 'WarpPerspectiveV1'). add_fields('bool', 'is_symm_kernel', 'true'). add_fields('uint32', 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1)) (pdef('SeparableFilter', version=1). add_enum_alias('Format', 'Convolution'). add_enum_alias('BorderMode', 'WarpPerspectiveV1'). add_fields('bool', 'is_symm_kernel', 'true'). add_fields('uint32', 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1)) (pdef('LocalShare', 'Local share convolution',version=0, is_legacy=True). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('spatial_groups_h', 'spatial groups on the first dimension'), 1, Doc('spatial_groups_w', 'spatial groups on the second dimension'), 1 ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_enum_alias('ComputeMode', 'ConvolutionV1') ) (pdef('LocalShare', 'Local share convolution', version=1). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('spatial_groups_h', 'spatial groups on the first dimension'), 1, Doc('spatial_groups_w', 'spatial groups on the second dimension'), 1 ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'Convolution'). add_enum_alias('ComputeMode', 'ConvolutionV1') ) (pdef('ROIAlign',version=0,is_legacy=True). add_enum('Mode', 'MAX = 0', 'AVERAGE = 1', name_field='mode'). add_enum_alias('Format', 'ConvolutionV0'). add_fields('float32', 'spatial_scale', '1.0'). add_fields('float32', 'offset', '0.0'). add_fields('uint32', 'pooled_height', '1', 'pooled_width', '1', 'sample_height', '2', 'sample_width', '2') ) (pdef('ROIAlign', version=1). add_enum_alias('Mode', 'ROIAlignV0', name_field='mode'). add_enum_alias('Format', 'Convolution'). add_fields('float32', 'spatial_scale', '1.0'). add_fields('float32', 'offset', '0.0'). add_fields('uint32', 'pooled_height', '1', 'pooled_width', '1', 'sample_height', '2', 'sample_width', '2') ) (pdef('Correlation'). add_enum_alias('Format', 'ConvolutionV0'). add_fields('uint32', 'kernel_size', '1'). add_fields('uint32', 'max_displacement', '1'). add_fields('uint32', 'stride1', '1'). add_fields('uint32', 'stride2', '1'). add_fields('uint32', 'pad_size', '0'). add_fields('bool', 'is_multiply', 'true') ) (pdef('DeformablePSROIPooling'). add_fields('bool', 'no_trans', 'true'). add_fields('float32', 'spatial_scale', 1, 'trans_std', 1). add_fields('uint32', Doc('pooled_h', 'height of pooling output'), 1, Doc('pooled_w', 'width of pooling output'), 1, Doc('part_size', 'size of each deformable part'), 1, Doc('sample_per_part', 'sample count of each bbox'), 1)) (pdef('BatchConvBias', 'Batch convolution (unshare weights on the batch dimension)',version=0,is_legacy=True). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'ConvolutionV0'). add_enum_alias('ComputeMode', 'ConvolutionV1', name_field="compute_mode") ) (pdef('BatchConvBias', 'Batch convolution (unshare weights on the batch dimension)',version=1). add_enum_alias('NonlineMode', 'ConvBiasV0'). add_enum_alias('Mode', 'ConvolutionV0'). add_fields( 'uint32', Doc('pad_h', 'padding on one side on the first dimension'), 0, Doc('pad_w', 'padding on one side on the second dimension'), 0, Doc('stride_h', 'kernel stride on the first dimension'), 1, Doc('stride_w', 'kernel stride on the second dimension'), 1, Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) ' 'on the second dimension'), 1, ). add_enum_alias('Sparse', 'ConvolutionV0'). add_enum_alias('Format', 'Convolution'). add_enum_alias('ComputeMode', 'ConvolutionV1', name_field="compute_mode") ) (pdef('FakeQuant'). add_fields('int32','qmin','-2147483648'). add_fields('int32','qmax','2147483647') ) (pdef('TQT'). add_fields('int32', 'qmin', '-2147483648'). add_fields('int32', 'qmax', '2147483647') ) (pdef('LSQ'). add_fields('int32', 'qmin', '-2147483648'). add_fields('int32', 'qmax', '2147483647') ) pdef('Fill').add_fields('float32', 'value', '0') pdef('CheckNonFinite').add_fields('float32', 'scale', '1.0') PADDING_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'), Doc('REFLECT = 1', 'fedcba|abcdefgh|hgfedcb'), Doc('CONSTANT = 2', 'iiiiii|abcdefgh|iiiiiii')] (pdef('Padding'). add_fields('uint32', Doc('front_offset_dim0','offset in dim 0'), 0). add_fields('uint32', Doc('front_offset_dim1','offset in dim 1'), 0). add_fields('uint32', Doc('front_offset_dim2','offset in dim 2'), 0). add_fields('uint32', Doc('front_offset_dim3','offset in dim 3'), 0). add_fields('uint32', Doc('front_offset_dim4','offset in dim 4'), 0). add_fields('uint32', Doc('front_offset_dim5','offset in dim 5'), 0). add_fields('uint32', Doc('front_offset_dim6','offset in dim 6'), 0). add_fields('uint32', Doc('back_offset_dim0', 'back offset in dim0'), 0). add_fields('uint32', Doc('back_offset_dim1', 'back offset in dim1'), 0). add_fields('uint32', Doc('back_offset_dim2', 'back offset in dim2'), 0). add_fields('uint32', Doc('back_offset_dim3', 'back offset in dim3'), 0). add_fields('uint32', Doc('back_offset_dim4', 'back offset in dim4'), 0). add_fields('uint32', Doc('back_offset_dim5', 'back offset in dim5'), 0). add_fields('uint32', Doc('back_offset_dim6', 'back offset in dim6'), 0). add_fields('float32', Doc('padding_val','param of padding opr'), 0). add_enum('PaddingMode', *PADDING_MODES, name_field='padding_mode', default=2, member_alias=[(i, 'PADDING_{}'.format(i)) for i in PADDING_MODES] ) ) (pdef('LayerNorm') .add_fields('bool', 'affine', 'true') .add_fields('float32', 'eps', '1e-5f') .add_fields('uint64', 'normalized_dim', '1') .add_fields('uint64', 'normalized_size', '1') ) (pdef('GeneralNorm') .add_fields('bool', 'affine', 'true') .add_fields('float32', 'eps', '1e-5f') .add_fields('uint64', 'axis_start', '0') .add_fields('uint64', 'axis_end', '0') ) (pdef('Dropout') .add_fields('float32', 'drop_prob', '0') .add_fields('uint64', 'seed', '0') ) (pdef('GroupNorm') .add_fields('bool', 'affine', 'true') .add_fields('float32', 'eps', '1e-5f') .add_fields('uint32', 'group', '1') .add_enum_alias('Format', 'Convolution') ) (pdef('RNNCell'). add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'TANH = 2') ) (pdef('RNN'). add_fields('uint32', Doc('num_layers', 'Number of recurrent layers'), '1'). add_fields('bool', Doc('bidirectional', 'If becomes a bidirectional RNN'), 'false'). add_fields('bool', Doc('bias', 'If the layer use bias weights b_ih and b_hh'), 'true'). add_fields('uint32', Doc('hidden_size', 'The number of features in the hidden state'), '128'). add_fields('float32', Doc('dropout', 'If introduce a Dropout layer on the outputs of each RNN layer'), '0.f'). add_enum_alias('NonlineMode', 'RNNCell'). add_enum_alias('FwdMode', 'BN', name_field='fwd_mode') ) (pdef('LSTM'). add_fields('uint32', Doc('num_layers', 'Number of recurrent layers'), '1'). add_fields('bool', Doc('bidirectional', 'If becomes a bidirectional LSTM'), 'false'). add_fields('bool', Doc('bias', 'If the layer use bias weights b_ih and b_hh'), 'true'). add_fields('uint32', Doc('hidden_size', 'The number of features in the hidden state'), '128'). add_fields('uint32', Doc('proj_size', 'If use LSTM with projections of corresponding size'), '0'). add_fields('float32', Doc('dropout', 'If introduce a Dropout layer on the outputs of each LSTM layer'), '0.f'). add_enum_alias('FwdMode', 'BN', name_field='fwd_mode') ) (pdef('LAMBUpdate'). add_fields('float32', Doc('beta_1', 'beta_1 paramter of lamb'), '1.f'). add_fields('float32', Doc('beta_2', 'beta_2 paramter of lamb'), '1.f'). add_fields('float32', Doc('step', 'training step'), '1.f'). add_fields('float32', Doc('lr', 'learning rate'), '1.f'). add_fields('float32', Doc('weight_decay', 'weight decay to adjust learning rate'), '1.f'). add_fields('float32', Doc('eps', 'eps to multi'), '1.f'). add_fields('bool', Doc('bias_correction', 'whether correct bias'), 'true'). add_fields('bool', Doc('always_adapt', 'apply adaptive lr to 0.0'), 'false') ) (pdef("Norm"). add_enum('Mode', Doc('P_NORM=0', 'calculate p-norm, parameter p would be ignored in other mode'), Doc('INF_NORM=1', 'infinite norm'), Doc('NEG_INF_NORM=2', 'negative infinite norm'), name_field="mode"). add_fields('float32', Doc('p', 'the order of norm'), '2'). add_fields('int32', Doc('dim', 'which dim the norm performed along'), '-1'), ) (pdef('MultiHeadAttn') .add_fields('uint32', Doc('num_heads', 'Number of parallel attention heads.'), '1') .add_fields('uint32', Doc('embeding_size', 'Total dimension of the model.'), '0') .add_fields('uint32', Doc('k_size', 'Total number of features for keys.'), '0') .add_fields('uint32', Doc('v_size', 'Total number of features for values.'), '0') .add_fields('uint32', Doc('qproj_size', 'query weight projection.'), '0') .add_fields('uint32', Doc('kproj_size', 'key weight projection.'), '0') .add_fields('uint32', Doc('vproj_size', 'value weight projection.'), '0') .add_fields('uint32', Doc('oproj_size', 'output weight projection.'), '0') .add_fields('bool', Doc('qbias', 'Whether to add query bias.'), 'false') .add_fields('bool', Doc('kbias', 'Whether to add key bias.'), 'false') .add_fields('bool', Doc('vbias', 'Whether to add value bias.'), 'false') .add_fields('bool', Doc('obias', 'Whether to add out bias.'), 'false') .add_fields('float32', Doc('sm_scaler', 'Softmax smoothing (1.0 >= smScaler >= 0.0) or sharpening (smScaler > 1.0) coefficient.'), '1.f') .add_fields('uint32', Doc('input_order', 'The sequence data layout, allows the user to select 3! = 6 different data layouts or permutations of BEAM, BATCH and TIME dimensions.'), '0') .add_enum('ATTN_MASK_TYPE', Doc('NO_MASK = 0', 'Indicates that there is no mask.'), Doc('DEFAULT_MASK = 1', 'Use the default mask which the upper right triangle of the mask is -inf, and the diagonal and lower left triangle are all 0.'), Doc('CUDNN_STYLE_MASK = 2', 'Indicates the use of a cudnn style mask.'), Doc('USER_DEFINED_MASK = 3', 'Use the user-defined mask.'), name_field="attn_mask_type") .add_enum(Doc('TENSOR_COMBINATION_TYPE', 'Used to determine whether mask tensor and bias_kv tensor exist in the input. Note that bias_kv here is not kbias and vbias in the linear layer, and bias_kv here will be added to the K and V at sequence dimensions, where K and V are the matrices of key and value after projection, and K and V will be used to calculate the attention matrix.'), Doc('NONE = 0', 'Indicates that there are no mask tensor and bias_kv tensor in the input.'), Doc('ONLY_MASK = 1', 'Indicates that there is only mask tensor in input.'), Doc('ONLY_BIASKV = 2', 'Indicates that there is only bias_kv tensor in input.'), Doc('ALL = 3', 'Indicates that there are mask tensor and bias_kv tensor in the input.'), name_field="tensor_combination_type") .add_fields('bool', Doc('add_zero_attn', 'Whether to add a new batch of zeros to the key and value sequences.'), 'false') .add_fields('bool', Doc('need_weights', 'Whether to return the attention matrix, which is the output result of softmax.'), 'false') .add_fields('bool', Doc('reslink', 'Whether to add input query to final output.'), 'false') .add_fields('bool', Doc('training', 'Whether it is in training mode.'), 'true') .add_fields('uint64', Doc('seed', 'Random number seed for drop'), '0') .add_fields('float32', Doc('attn_prob', 'Dropout probability on attention, is applied directly to the softmax output'), '0.f') .add_fields('float32', Doc('out_prob', 'Dropout probability on output, alters the multi-head attention output'), '0.f') )