#include "megbrain/imperative/ops/autogen.h" #include "megbrain/imperative/proxy_graph_detail.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/internal/indexing_helper.h" #include "megbrain/opr/internal/megdnn_opr_wrapper.h" #include "megbrain/opr/io.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" #include "megbrain/tensor.h" #include "../algo_chooser.h" #include "../blob_manager_impl.h" #include "../dnn_op_helper.h" #include "../op_trait.h" using namespace mgb::opr::indexing; namespace mgb::imperative { namespace { namespace subtensor { auto get_index( const VarNodeArray& inputs, const std::vector>& mask, const std::vector>& slice) { size_t length = mask.size(); auto graph = inputs[0]->owner_graph(); auto comp_node = inputs[0]->comp_node(); opr::Subtensor::IndexDesc ret(length); auto immutable_node = [&](int val) { DTypeScalar scalar = DTypeScalar(static_cast(val)); return opr::ImmutableTensor::make(*graph, scalar, {comp_node}); }; for (size_t i = 0; i < length; ++i) { auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = mask[i]; auto&& [b_val, e_val, s_val, ax_val] = slice[i]; ret[i].axis = axis; if (idx_flag) { ret[i].idx = immutable_node(ax_val); } else { if (b_flag) { ret[i].begin = immutable_node(b_val); } if (e_flag) { ret[i].end = immutable_node(e_val); } if (s_flag) { ret[i].step = immutable_node(s_val); } } } return ret; } auto origin_get_index( const VarNodeArray& inputs, size_t vidx, const std::vector>& mask) { size_t length = mask.size(); opr::Subtensor::IndexDesc ret(length); for (size_t i = 0; i < length; ++i) { auto&& [axis, begin, end, step, idx] = mask[i]; ret[i].axis = axis; if (idx) { ret[i].idx = inputs[vidx++]; } else { mgb_assert(begin || end || step); if (begin) ret[i].begin = inputs[vidx++]; if (end) ret[i].end = inputs[vidx++]; if (step) ret[i].step = inputs[vidx++]; } } mgb_assert(vidx == inputs.size()); return ret; } auto mod_size = [](int v, int size_ax) -> int { if (size_ax == 0) return 0; return v < 0 ? v + size_ax : v; }; TensorLayout deduce_layout( TensorLayout src, std::vector> items, std::vector> slice_items) { auto tostr = [](int v) -> std::string { return std::to_string(v); }; for (int i = items.size() - 1; i >= 0; i--) { auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = items[i]; auto&& [b_val, e_val, s_val, ax_val] = slice_items[i]; int shape_axis = src.shape[axis]; int slice_step = s_val == INT_MAX ? 1 : s_val; int slice_start = b_val == INT_MIN ? 0 : b_val; int slice_stop = e_val == INT_MAX ? shape_axis : e_val; if (slice_step > 0) { slice_start = mod_size(slice_start, shape_axis); slice_stop = mod_size(slice_stop, shape_axis); slice_stop = std::min(slice_stop, shape_axis); slice_start = std::min(slice_start, slice_stop); mgb_assert( (slice_start >= 0 && slice_stop >= slice_start && slice_stop <= shape_axis), "index out of bound: layout=%s; request begin=%s end=%s step=%s " "axis=%s", src.to_string().c_str(), tostr(slice_start).c_str(), tostr(slice_stop).c_str(), tostr(slice_step).c_str(), tostr(axis).c_str()); } else { slice_start = b_val == INT_MIN ? shape_axis - 1 : b_val; slice_start = mod_size(slice_start, shape_axis); slice_stop = e_val == INT_MAX ? -1 : mod_size(e_val, shape_axis); slice_start = std::min(slice_start, std::max(shape_axis - 1, 0)); slice_stop = std::min(slice_stop, slice_start); mgb_assert( (slice_step < 0 && slice_start >= 0 && slice_stop <= slice_start && slice_start < shape_axis && slice_stop >= -1), "index out of bound: layout=%s; request begin=%s end=%s step=%s " "axis=%s", src.to_string().c_str(), tostr(slice_start).c_str(), tostr(slice_stop).c_str(), tostr(slice_step).c_str(), tostr(axis).c_str()); } int abs_step = std::abs(slice_step); if (axis < 0) { axis = axis + src.ndim; }; if (idx_flag == true) { if (src.ndim == 1) { src.shape[0] = 1; } else { src.remove_axis_inplace(axis); } } else { src.shape[axis] = (std::abs(slice_stop - slice_start) + abs_step - 1) / abs_step; src.stride[axis] *= slice_step; } } return src; } auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); OperatorNodeConfig config{op.make_name()}; if (inputs.size() > 1) { return opr::Subtensor::make( inputs[0], origin_get_index(inputs, 1, op.items), config); } else { return opr::Subtensor::make( inputs[0], get_index(inputs, op.items, op.slice_items), config); } } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { if (inputs.size() >= 2) { return proxy_graph_detail::infer_output_attrs_fallible(def, inputs); } auto&& inp = inputs[0]; auto& inp_cn = inp.comp_node; if (inp.layout.ndim == 0) { return {{{TensorLayout{inp.layout.dtype}, inp_cn, {}}}, false}; } auto&& op = static_cast(def); auto items = op.items; auto slice_itmes = op.slice_items; TensorLayout out_layout = deduce_layout(inp.layout, items, slice_itmes); return {{{out_layout, inp_cn, {}}}, true}; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { CompNode cn = inputs[0]->comp_node(); auto&& layout = inputs[0]->layout(); auto&& op = static_cast(def); if (inputs.size() > 1) { return proxy_graph_detail::apply_on_physical_tensor( def, inputs, output_descs, validated); } auto&& src = inputs[0]; auto slice_items = op.slice_items; auto items = op.items; TensorLayout res_layout = deduce_layout(layout, items, slice_items); if (res_layout.is_empty()) { return {Tensor::make(res_layout, cn)}; } size_t offset = 0; size_t dtype_size = layout.dtype.size(); TensorPtr tensor = src; for (int i = items.size() - 1; i >= 0; i--) { auto&& [axis, b_flag, e_flag, s_flag, idx_flag] = items[i]; auto&& [b_val, e_val, s_val, ax_val] = slice_items[i]; int start = b_val; if (idx_flag) { ax_val = ax_val < 0 ? layout.shape[axis] + ax_val : ax_val; offset += ax_val * layout.stride[axis] * dtype_size; } else { if (s_val < 0) { int shape_axis = src->layout().shape[axis]; start = b_val == INT_MIN ? shape_axis - 1 : b_val; start = mod_size(start, shape_axis); } start = std::max(start, 0); offset += start * layout.stride[axis] * dtype_size; } } // memory forward return {Tensor::make(src->blob(), src->offset() + offset, res_layout)}; } SmallVector get_input_layout_constraint( const OpDef& def, const SmallVector& inputs) { SmallVector layout_checker(inputs.size()); return layout_checker; } OP_TRAIT_REG(Subtensor, Subtensor) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_physical_tensor(apply_on_physical_tensor) .get_input_layout_constraint(get_input_layout_constraint) .fallback(); } // namespace subtensor } // namespace } // namespace mgb::imperative