/** * \file dnn/test/cuda/convolution.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "test/common/convolution.h" #include "megdnn/dtype.h" #include "megdnn/opr_param_defs.h" #include "megdnn/oprs.h" #include "src/cuda/utils.h" #include "test/common/accuracy_shake_checker.h" #include "test/common/checker.h" #include "test/common/rng.h" #include "test/common/tensor.h" #include "test/common/workspace_wrapper.h" #include "test/cuda/benchmark.h" #include "test/cuda/fixture.h" #define V1(x) #x #define V(x) V1(x) #define CUDNN_VERSION_STRING \ "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL) namespace megdnn { namespace test { TEST_F(CUDA, CONVOLUTION_8X8X32) { if (!cuda::is_compute_capability_required(6, 1)) { printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device" "doesn't support\n"); return; } using namespace convolution; std::vector args; { auto v = get_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } { auto v = get_dilated_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } { auto v = get_chanwise_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } Checker checker(handle_cuda()); UniformIntRNG rng(-4, 4); for (auto arg : args) { arg.param.format = param::Convolution::Format::NHWC; arg.src = cvt_src_or_dst_nchw2nhwc(arg.src); arg.filter = cvt_filter_nchw2nhwc(arg.filter); checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_param(arg.param) .set_rng(0, &rng) .set_rng(1, &rng) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONVOLUTION_FORWARD) { using namespace convolution; std::vector args = get_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); checker.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()) .set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()) .set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); checker.set_dtype(0, dtype::BFloat16()) .set_dtype(1, dtype::BFloat16()) .set_dtype(2, dtype::BFloat16()) .set_epsilon(1e-1) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) { if (!cuda::is_compute_capability_required(6, 1)) return; using namespace convolution; Checker checker(handle_cuda()); UniformIntRNG int_rng{-127, 127}; Convolution::Param param; param.format = Convolution::Param::Format::NCHW4; checker.set_dtype(0, dtype::QuantizedS8(0.132f)) .set_dtype(1, dtype::QuantizedS8(0.0239f)) .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f)) .set_rng(0, &int_rng) .set_rng(1, &int_rng) .set_param(param); checker.set_before_exec_callback( AlgoChecker(ExecutionPolicyAlgoName{ "DEFAULT", {{ConvBiasForward::algo_name( "MATMUL8X8X32", {}) .c_str(), {}}}})); param.sparse = Convolution::Param::Sparse::DENSE; param.pad_h = param.pad_w = 1; param.stride_h = param.stride_w = 1; checker.set_param(param); checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}}); checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}}); checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}}); } TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) { using namespace convolution; std::vector args = get_1x1_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) { using namespace convolution; std::vector args = get_1x1_args(); Benchmarker marker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); marker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) { using namespace convolution; std::vector args = get_args_cuda_conv_bwd_data(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); if (!cuda::is_compute_capability_required(6, 0)) { src.dtype = dst.dtype = filter.dtype = dtype::Float16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } checker.set_before_exec_callback( AlgoChecker(ExecutionPolicyAlgoName{ "CONVOLUTION_BACKWARD_DATD_BFLOAT16", {{"MATMUL", {{"CUBLAS", {}}}}}})); src.dtype = dst.dtype = filter.dtype = dtype::BFloat16(); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); checker.reset_before_exec_callback(); checker.opr()->execution_policy() = {}; } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FP16_CUDNN7_5) { // algo CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 with // TensorCore operations produces incorrect result. // Maybe nvidia has fixed this issue // There is a test using incorrect case: // inp={2x8x18x18}, kern={8x8x2x2}, pad_h=pad_w=2, stride_h=stride_w=2, // dtype=float16 using namespace convolution; std::vector args = get_args_cudnn_5_1_backward(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]); scale = std::max(scale, 1.f); UniformFloatRNG rng(scale, 2 * scale); arg.param.format = param::Convolution::Format::NHWC; arg.src = cvt_src_or_dst_nchw2nhwc(arg.src); arg.filter = cvt_filter_nchw2nhwc(arg.filter); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float16(); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-2) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-2) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_NHWC) { using namespace convolution; std::vector args = get_args_cuda_conv_bwd_data(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); arg.param.format = param::Convolution::Format::NHWC; arg.src = cvt_src_or_dst_nchw2nhwc(arg.src); arg.filter = cvt_filter_nchw2nhwc(arg.filter); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float16(); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-2) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-2) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) { if (cuda::is_compute_capability_required(7, 0)) return; using namespace convolution; Checker checker(handle_cuda()); checker.set_before_exec_callback( AlgoChecker("CUDNN_CONVOLUTION")); //! noncontiguous case { param::Convolution param; param.pad_h = param.pad_w = 1; checker.set_param(param).execl(TensorLayoutArray{ {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, }); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) { using namespace convolution; std::vector args = get_args_cuda_conv_bwd_data(); Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker( ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}})); NormalRNG default_rng; for (auto&& arg : args) { float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } //! noncontiguous case { param::Convolution param; param.pad_h = param.pad_w = 1; checker.set_param(param).execl(TensorLayoutArray{ {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, }); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) { if (!cuda::is_compute_capability_required(6, 1)) { printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as " "current device doesn't support\n"); return; } using namespace convolution; std::vector args = get_args_int8_nchw4_conv_bwd_data(); struct AlgoParam { int threadblock_m; int threadblock_n; int threadblock_k; int warp_m; int warp_n; int warp_k; int stage; std::string to_string() { return ssprintf( "_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, threadblock_k, warp_m, warp_n, warp_k, stage); } }; std::vector all_params; all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2}); all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); for (auto algo_param : all_params) { Checker checker(handle_cuda()); std::string algo_name(ssprintf( "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s", algo_param.to_string().c_str())); checker.set_before_exec_callback( AlgoChecker(algo_name.c_str())); checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1); for (auto&& arg : args) { UniformIntRNG rng(-3, 3); auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f}); auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f}); TensorLayout dst; dst.dtype = dtype::QuantizedS8{1.2f}; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec( TensorLayoutArray{filter, dst, src}); } } } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) { if (!cuda::is_compute_capability_required(6, 1)) { printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as " "current device doesn't support\n"); return; } using namespace convolution; std::vector args = get_args_int8_nchw_conv_bwd_data(); Checker checker(handle_cuda()); checker.set_before_exec_callback( AlgoChecker("INT8_NCHW_DOTPROD_IMPLICIT_GEMM")); checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1); for (auto&& arg : args) { UniformIntRNG rng(-3, 3); auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f}); auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f}); TensorLayout dst; dst.dtype = dtype::QuantizedS8{1.2f}; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec( TensorLayoutArray{filter, dst, src}); } } #if CUDA_VERSION >= 10020 TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA) { if (!cuda::is_compute_capability_required(7, 5)) { printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA test as " "current device doesn't support\n"); return; } using namespace convolution; std::vector args = get_args_int8_nhwc_conv_bwd_data(); struct AlgoParam { int threadblock_m; int threadblock_n; int threadblock_k; int warp_m; int warp_n; int warp_k; int stage; int access_size; std::string to_string() { return ssprintf( "_%dX%dX%d_%dX%dX%d_%dstage_%d", threadblock_m, threadblock_n, threadblock_k, warp_m, warp_n, warp_k, stage, access_size); } }; std::vector all_params; all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 4}); all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 8}); all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 16}); all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 4}); all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 8}); all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 16}); for (auto algo_param : all_params) { Checker checker(handle_cuda()); std::string algo_name(ssprintf( "INT8_NHWC_IMMA_IMPLICIT_GEMM%s", algo_param.to_string().c_str())); checker.set_before_exec_callback( AlgoChecker(algo_name.c_str())); checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1); for (auto&& arg : args) { UniformIntRNG rng(-3, 3); auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f}); auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f}); TensorLayout dst; dst.dtype = dtype::QuantizedS8{1.2f}; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec( TensorLayoutArray{filter, dst, src}); } } } #endif TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) { // BRAIN-481 failed on architectures 7.0, remove the following if statement, // when cudnn fixed the problem. if (cuda::is_compute_capability_required(7, 0)) return; using namespace convolution; std::vector args = get_args_cudnn_7_5_failures(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]); scale = std::max(scale, 1.f); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); src.dtype = dst.dtype = filter.dtype = dtype::Float16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) { using namespace convolution; std::vector args = get_args(); Checker checker(handle_cuda()); bool f16_checked = false; for (auto&& arg : args) { auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } float scale = 1.0f / sqrt(dst[2] * dst[3]); UniformFloatRNG rng(scale, 2 * scale); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); // reduce on large f16 array may introduce significant error if (dst.total_nr_elems() >= 1000 && f16_checked) continue; f16_checked = true; src.dtype = dst.dtype = filter.dtype = dtype::Float16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); checker.set_before_exec_callback( AlgoChecker(ExecutionPolicyAlgoName{ "CONVOLUTION_BACKWARD_FILTER_BFLOAT16", {{"MATMUL", {{"CUBLAS", {}}}}}})); src.dtype = dst.dtype = filter.dtype = dtype::BFloat16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); checker.reset_before_exec_callback(); checker.opr()->execution_policy() = {}; } } TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) { using namespace convolution; std::vector args = get_args(); Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker( ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}})); for (auto&& arg : args) { auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } float scale = 1.0f / sqrt(dst[2] * dst[3]); UniformFloatRNG rng(scale, 2 * scale); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); } //! noncontiguous case { NormalRNG default_rng; param::Convolution param; param.pad_h = param.pad_w = 1; checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(param) .execl(TensorLayoutArray{ {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}}); } } TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_CUDNN) { if (cuda::is_compute_capability_required(7, 0)) return; using namespace convolution; Checker checker(handle_cuda()); checker.set_before_exec_callback( AlgoChecker("CUDNN_CONVOLUTION")); //! noncontiguous case { param::Convolution param; param.pad_h = param.pad_w = 1; checker.set_param(param).execl(TensorLayoutArray{ {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()}, {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}}); } } TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) { auto eps_getter = [](bool f16, int stage, const char* name) -> float { if (f16) { return stage == 2 ? 0.5 : 0.2; } if (strstr(name, "WINOGRAD_NONFUSED")) return 0.3; return 1e-3; }; convolution::test_conv_config_combinations( 2, handle_cuda(), false, true, true, eps_getter, true); convolution::test_conv_config_combinations( 3, handle_cuda(), false, true, true, eps_getter, true); convolution::test_conv_config_combinations( 5, handle_cuda(), false, true, true, eps_getter, true); } TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) { if (cuda::is_compute_capability_required(7, 0)) return; using namespace convolution; Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker( "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING)); NormalRNG default_rng; TensorShape s_filter = TensorShape{8, 8, 2, 2}, s_src = TensorShape{2, 8, 18, 18}; float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(s_src, dtype::Float16()); auto filter = TensorLayout(s_filter, dtype::Float16()); TensorLayout dst; param::Convolution param; param.pad_h = param.pad_w = 2; param.stride_h = param.stride_w = 2; { auto opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float16(); param.compute_mode = param::Convolution::ComputeMode::FLOAT32; checker.set_rng(0, &rng).set_rng(1, &rng).set_epsilon(0.2).set_param(param).exec( TensorLayoutArray{filter, dst, src}); } TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { Checker checker(handle_cuda()); checker.set_before_exec_callback( AlgoChecker("DEPTHWISE_LARGE_FILTER")); for (auto dtype : std::vector{dtype::Float32()}) { auto run = [&checker, &dtype](size_t n, size_t g, size_t h, size_t fh) { param::Convolution param; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = fh / 2; param.mode = Convolution::Mode::CROSS_CORRELATION; param.sparse = param::Convolution::Sparse::GROUP; checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype); checker.set_param(param).execs( {{g, 1, 1, fh, fh}, {n, g, h, h}, {n, g, h, h}}); }; run(4, 8, 32, 5); run(4, 8, 32, 7); run(4, 8, 32, 9); run(4, 8, 32, 11); run(4, 8, 32, 13); run(4, 8, 32, 15); run(4, 8, 32, 17); run(4, 8, 32, 19); run(4, 8, 32, 21); run(4, 8, 32, 23); run(4, 8, 32, 25); run(4, 8, 32, 27); run(4, 8, 32, 29); run(4, 8, 32, 31); run(4, 8, 64, 7); run(4, 8, 64, 5); run(4, 8, 64, 9); run(4, 8, 64, 11); run(4, 8, 64, 13); run(4, 8, 64, 15); run(4, 8, 64, 17); run(4, 8, 64, 19); run(4, 8, 64, 21); run(4, 8, 64, 23); run(4, 8, 64, 25); run(4, 8, 64, 27); run(4, 8, 64, 29); run(4, 8, 64, 31); run(1, 2, 128, 31); run(1, 2, 256, 31); } } #if MEGDNN_WITH_BENCHMARK TEST_F(CUDA, CONV_FWD_BENCHMARK) { auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1, size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) { auto benchmarker = Benchmarker(handle_cuda()); benchmarker.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()); ConvolutionForward::Param param; param.stride_h = SH; param.stride_w = SW; param.pad_h = PH; param.pad_w = PW; if (fp16io_c32) { param.compute_mode = ConvolutionForward::Param::ComputeMode::FLOAT32; } benchmarker.set_param(param); std::unique_ptr> proxy{ new OprProxy{true}}; benchmarker.set_proxy(proxy); size_t OH = (IH - FH + 2 * PH) / SH + 1; size_t OW = (IW - FW + 2 * PW) / SW + 1; auto time = benchmarker.execs({{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}}); time /= 1000.0 * 10.0; auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2; auto flops = flo / time / 1e12; printf("comp_type %s: ", fp16io_c32 ? "32" : "16"); printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops); }; run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false); run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true); } TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = PH; param.compute_mode = param::Convolution::ComputeMode::DEFAULT; bench.set_param(param); bench.proxy()->target_execution_policy.algo.reset(); TensorLayout src{{N, IC, IH, IW}, dtype::Float32()}, filter{{OC, IC, FH, FH}, dtype::Float32()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS; src.dtype = filter.dtype = dst.dtype = dtype::Float16(); bench.proxy()->target_execution_policy.algo.reset(); bench.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()); auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS; param.compute_mode = param::Convolution::ComputeMode::FLOAT32; bench.proxy()->target_execution_policy.algo.reset(); bench.set_param(param); auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS; float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, " "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n", time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16, (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16, (flo / (time_ms_pseudo_fp16 * 1e9))); printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n", time_ms_fp32 / time_ms_true_fp16, time_ms_pseudo_fp16 / time_ms_true_fp16); }; run(32, 64, 3, 224, 224, 7, 2, 3); run(32, 128, 128, 28, 28, 3, 1, 1); run(32, 256, 256, 14, 14, 3, 1, 1); run(32, 512, 512, 7, 7, 3, 1, 1); run(32, 64, 64, 56, 56, 3, 1, 1); run(32, 512, 256, 56, 56, 1, 2, 0); run(32, 1024, 512, 28, 28, 1, 2, 0); run(32, 2048, 1024, 14, 14, 1, 2, 0); run(32, 512, 128, 28, 28, 1, 1, 0); run(32, 128, 512, 28, 28, 1, 1, 0); run(32, 1024, 256, 14, 14, 1, 1, 0); run(32, 256, 1024, 14, 14, 1, 1, 0); run(32, 2048, 512, 7, 7, 1, 1, 0); run(32, 512, 2048, 7, 7, 1, 1, 0); run(32, 256, 64, 56, 56, 1, 1, 0); run(32, 64, 256, 56, 56, 1, 1, 0); run(32, 128, 256, 56, 56, 1, 2, 0); run(32, 256, 512, 28, 28, 1, 2, 0); run(32, 512, 1024, 14, 14, 1, 2, 0); run(32, 64, 64, 56, 56, 1, 1, 0); } TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = PH; param.compute_mode = param::Convolution::ComputeMode::DEFAULT; bench.set_param(param); bench.proxy()->target_execution_policy.algo.reset(); TensorLayout src{{N, IC, IH, IW}, dtype::Float32()}, filter{{OC, IC, FH, FH}, dtype::Float32()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS; src.dtype = filter.dtype = dst.dtype = dtype::Float16(); bench.proxy()->target_execution_policy.algo.reset(); bench.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()); auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS; param.compute_mode = param::Convolution::ComputeMode::FLOAT32; bench.proxy()->target_execution_policy.algo.reset(); bench.set_param(param); auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS; float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, " "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n", time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16, (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16, (flo / (time_ms_pseudo_fp16 * 1e9))); printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n", time_ms_fp32 / time_ms_true_fp16, time_ms_pseudo_fp16 / time_ms_true_fp16); }; run(32, 64, 3, 224, 224, 7, 2, 3); run(32, 128, 128, 28, 28, 3, 1, 1); run(32, 256, 256, 14, 14, 3, 1, 1); run(32, 512, 512, 7, 7, 3, 1, 1); run(32, 64, 64, 56, 56, 3, 1, 1); run(32, 512, 256, 56, 56, 1, 2, 0); run(32, 1024, 512, 28, 28, 1, 2, 0); run(32, 2048, 1024, 14, 14, 1, 2, 0); run(32, 512, 128, 28, 28, 1, 1, 0); run(32, 128, 512, 28, 28, 1, 1, 0); run(32, 1024, 256, 14, 14, 1, 1, 0); run(32, 256, 1024, 14, 14, 1, 1, 0); run(32, 2048, 512, 7, 7, 1, 1, 0); run(32, 512, 2048, 7, 7, 1, 1, 0); run(32, 256, 64, 56, 56, 1, 1, 0); run(32, 64, 256, 56, 56, 1, 1, 0); run(32, 128, 256, 56, 56, 1, 2, 0); run(32, 256, 512, 28, 28, 1, 2, 0); run(32, 512, 1024, 14, 14, 1, 2, 0); run(32, 64, 64, 56, 56, 1, 1, 0); } TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER) { CUBenchmarker bencher{handle_cuda()}; bencher.set_display(false); bencher.set_before_exec_callback( AlgoChecker("DEPTHWISE_LARGE_FILTER")); auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, size_t SH, size_t nr_times) { bencher.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = FH / 2; param.sparse = param::Convolution::Sparse::GROUP; bencher.set_param(param); bencher.set_times(nr_times); TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, filter{{g, 1, 1, FH, FH}, dtype::Float32()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto time_ms_fp32 = bencher.execl({filter, dst, src}) / nr_times; float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, (flo / (time_ms_fp32 * 1e9))); }; run(64, 384, 384, 32, 32, 3, 1, 10); run(64, 384, 384, 32, 32, 5, 1, 10); run(64, 384, 384, 32, 32, 7, 1, 10); run(64, 384, 384, 32, 32, 9, 1, 10); run(64, 384, 384, 32, 32, 11, 1, 10); run(64, 384, 384, 32, 32, 13, 1, 10); run(64, 384, 384, 32, 32, 15, 1, 10); run(64, 384, 384, 32, 32, 17, 1, 10); run(64, 384, 384, 32, 32, 19, 1, 10); run(64, 384, 384, 32, 32, 21, 1, 10); run(64, 384, 384, 32, 32, 23, 1, 10); run(64, 384, 384, 32, 32, 25, 1, 10); run(64, 384, 384, 32, 32, 27, 1, 10); run(64, 384, 384, 32, 32, 29, 1, 10); run(64, 384, 384, 32, 32, 31, 1, 10); } TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::BFloat16()) .set_dtype(1, dtype::BFloat16()) .set_dtype(2, dtype::BFloat16()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = PH; param.compute_mode = param::Convolution::ComputeMode::DEFAULT; bench.set_param(param); bench.proxy()->target_execution_policy = {}; TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()}, filter{{OC, IC, FH, FH}, dtype::BFloat16()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto used = bench.execl({filter, dst, src}) / RUNS; float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9))); }; run(32, 64, 3, 224, 224, 7, 2, 3); run(32, 128, 128, 28, 28, 3, 1, 1); run(32, 256, 256, 14, 14, 3, 1, 1); run(32, 512, 512, 7, 7, 3, 1, 1); run(32, 64, 64, 56, 56, 3, 1, 1); run(32, 512, 256, 56, 56, 1, 2, 0); run(32, 1024, 512, 28, 28, 1, 2, 0); run(32, 2048, 1024, 14, 14, 1, 2, 0); run(32, 512, 128, 28, 28, 1, 1, 0); run(32, 128, 512, 28, 28, 1, 1, 0); run(32, 1024, 256, 14, 14, 1, 1, 0); run(32, 256, 1024, 14, 14, 1, 1, 0); run(32, 2048, 512, 7, 7, 1, 1, 0); run(32, 512, 2048, 7, 7, 1, 1, 0); run(32, 256, 64, 56, 56, 1, 1, 0); run(32, 64, 256, 56, 56, 1, 1, 0); run(32, 128, 256, 56, 56, 1, 2, 0); run(32, 256, 512, 28, 28, 1, 2, 0); run(32, 512, 1024, 14, 14, 1, 2, 0); run(32, 64, 64, 56, 56, 1, 1, 0); } TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::QuantizedS8{1.0f}) .set_dtype(1, dtype::QuantizedS8{1.0f}) .set_dtype(2, dtype::QuantizedS8{1.0f}); param::Convolution param; param.format = param::Convolution::Format::NCHW4; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = PH; param.compute_mode = param::Convolution::ComputeMode::DEFAULT; bench.set_param(param); bench.proxy()->target_execution_policy = {}; TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}}, filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}}; TensorLayout dst; dst.dtype = dtype::QuantizedS8{1.0f}; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto used = bench.execl({filter, dst, src}) / RUNS; float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9))); }; run(64, 32, 32, 92, 180, 4, 2, 2); run(64, 32, 32, 46, 80, 4, 2, 2); run(16, 16, 16, 92, 180, 4, 2, 2); run(16, 16, 16, 46, 80, 4, 2, 2); } TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = PH; param.compute_mode = param::Convolution::ComputeMode::DEFAULT; bench.set_param(param); bench.proxy()->target_execution_policy.algo.reset(); TensorLayout src{{N, IC, IH, IW}, dtype::Float32()}, filter{{OC, IC, FH, FH}, dtype::Float32()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS; src.dtype = filter.dtype = dst.dtype = dtype::Float16(); bench.proxy()->target_execution_policy.algo.reset(); bench.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()); auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS; param.compute_mode = param::Convolution::ComputeMode::FLOAT32; bench.proxy()->target_execution_policy.algo.reset(); bench.set_param(param); auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS; float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, " "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n", time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16, (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16, (flo / (time_ms_pseudo_fp16 * 1e9))); printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n", time_ms_fp32 / time_ms_true_fp16, time_ms_pseudo_fp16 / time_ms_true_fp16); }; run(32, 64, 3, 224, 224, 7, 2, 3); run(32, 128, 128, 28, 28, 3, 1, 1); run(32, 256, 256, 14, 14, 3, 1, 1); run(32, 512, 512, 7, 7, 3, 1, 1); run(32, 64, 64, 56, 56, 3, 1, 1); run(32, 512, 256, 56, 56, 1, 2, 0); run(32, 1024, 512, 28, 28, 1, 2, 0); run(32, 2048, 1024, 14, 14, 1, 2, 0); run(32, 512, 128, 28, 28, 1, 1, 0); run(32, 128, 512, 28, 28, 1, 1, 0); run(32, 1024, 256, 14, 14, 1, 1, 0); run(32, 256, 1024, 14, 14, 1, 1, 0); run(32, 2048, 512, 7, 7, 1, 1, 0); run(32, 512, 2048, 7, 7, 1, 1, 0); run(32, 256, 64, 56, 56, 1, 1, 0); run(32, 64, 256, 56, 56, 1, 1, 0); run(32, 128, 256, 56, 56, 1, 2, 0); run(32, 256, 512, 28, 28, 1, 2, 0); run(32, 512, 1024, 14, 14, 1, 2, 0); run(32, 64, 64, 56, 56, 1, 1, 0); } TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_DEPTHWISE_LARGE_FILTER) { CUBenchmarker bench{handle_cuda()}; std::unique_ptr> proxy{ new OprProxy{true}}; size_t RUNS = 10; bench.set_proxy(proxy).set_times(RUNS); bench.set_before_exec_callback(AlgoChecker( "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3")); auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, size_t SH, size_t PH) { bench.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()); param::Convolution param; param.stride_h = param.stride_w = SH; param.pad_h = param.pad_w = FH / 2; param.sparse = param::Convolution::Sparse::GROUP; bench.set_param(param); bench.proxy()->target_execution_policy.algo.reset(); TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, filter{{g, 1, 1, FH, FH}, dtype::Float32()}; TensorLayout dst; { auto&& opr = handle_cuda()->create_operator(); opr->param() = param; opr->deduce_layout(src, filter, dst); } auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS; float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), filter.to_string().c_str(), dst.to_string().c_str()); printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, (flo / (time_ms_fp32 * 1e9))); }; run(64, 384, 384, 32, 32, 31, 1, 15); } #endif #undef CUDNN_VERSION_STRING #undef V #undef V1 } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen