/** * \file imperative/src/impl/ops/broadcast.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/imperative/ops/autogen.h" #include "megbrain/opr/tensor_manip.h" #include "../op_trait.h" namespace mgb { namespace imperative { namespace broadcast { std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { node_->cast_final_safe(); return Broadcast::make(); } cg::OperatorNodeBase* apply_on_var_node( const OpDef& def, const VarNodeArray& inputs) { auto&& op = def.cast_final_safe(); size_t nr_inp = inputs.size(); mgb_assert(nr_inp == 2, "Broadcast expects 2 inputs; got %lu actually", nr_inp); OperatorNodeConfig config{op.make_name()}; return opr::Broadcast::make(inputs[0], inputs[1], config).node()->owner_opr(); } bool valid_broadcast(const TensorShape& src_shape, const TensorShape& tar_shape) { size_t src_ndim = src_shape.ndim, tar_ndim = tar_shape.ndim; if (src_ndim > tar_ndim) { return false; } size_t min_ndim = src_ndim; for (size_t i = 0; i < min_ndim; ++i) { if (src_shape[src_ndim - i - 1] != 1 && src_shape[src_ndim - i - 1] != tar_shape[tar_ndim - i - 1]) { return false; } } return true; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { def.cast_final_safe(); size_t nr_inp = inputs.size(); mgb_assert(nr_inp == 2, "Broadcast expects 2 inputs; got %lu actually", nr_inp); auto&& src = inputs[0]; auto&& tshp = inputs[1]; TensorShape out_shape; if (tshp.layout.ndim == 0 || tshp.value.empty()) { out_shape.ndim = 0; return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, false}; } mgb_assert( tshp.layout.ndim == 1, "target shape of Broadcast expects ndim=1; got ndim=%lu actually", tshp.layout.ndim); size_t target_ndim = tshp.layout.shape[0]; out_shape.ndim = target_ndim; auto* ptr = tshp.value.ptr(); for (size_t i = 0; i < target_ndim; ++i) { out_shape[i] = ptr[i]; } mgb_assert(valid_broadcast(src.layout, out_shape), "the input shape %s can not be broadcasted to target shape %s", src.layout.to_string().c_str(), out_shape.to_string().c_str()); return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, true}; } OP_TRAIT_REG(Broadcast, Broadcast, opr::Broadcast) .make_from_op_node(make_from_op_node) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .fallback(); } // broadcast namespace reshape { auto apply_on_var_node( const OpDef& def, const VarNodeArray& inputs) { auto&& op = static_cast(def); mgb_assert(inputs.size() == 2); OperatorNodeConfig config{op.make_name()}; return opr::Reshape::make(inputs[0], inputs[1], op.param(), config); } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { auto&& op = def.cast_final_safe(); size_t nr_inp = inputs.size(); mgb_assert(nr_inp == 2, "Reshape expects 2 inputs; got %lu actually", nr_inp); auto&& src = inputs[0]; auto&& tshp = inputs[1]; TensorShape out_shape; if (tshp.layout.ndim == 0 || tshp.value.empty()) { out_shape.ndim = 0; return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, false}; } mgb_assert( tshp.layout.ndim == 1, "target shape of Reshape expects ndim=1; got ndim=%lu actually", tshp.layout.ndim); if (src.layout.ndim == 0 && op.axis != opr::Reshape::Param::INVALID_AXIS) { return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, false}; } size_t target_ndim = tshp.layout.shape[0]; out_shape.ndim = target_ndim; auto* ptr = tshp.value.ptr(); for (size_t i = 0; i < target_ndim; ++i) { out_shape[i] = ptr[i]; } if (src.layout.ndim == 0) { return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, false}; } if (op.axis != opr::Reshape::Param::INVALID_AXIS) { mgb_assert(out_shape[op.axis] == -1); out_shape[op.axis] = 1; mgb_assert(src.layout.total_nr_elems() % out_shape.total_nr_elems() == 0, "can not reshape from %s to %s", src.layout.to_string().c_str(), out_shape.to_string().c_str()); out_shape[op.axis] = src.layout.total_nr_elems() / out_shape.total_nr_elems(); } else { mgb_assert(src.layout.total_nr_elems() == out_shape.total_nr_elems(), "can not reshape from %s to %s", src.layout.to_string().c_str(), out_shape.to_string().c_str()); } return {{{TensorLayout(out_shape, src.layout.dtype), src.comp_node}}, true}; } OP_TRAIT_REG(Reshape, Reshape) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .fallback(); } // reshape } // namespace imperative } // namespace mgb // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}