#pragma once #include "lite/network.h" #include "misc.h" #include "tensor_impl_base.h" #include "type_info.h" #include #include namespace lite { /*! * \brief network reference count */ class NetworkRefCount : public Singleton { public: NetworkRefCount() : count(0) {} NetworkRefCount& operator++(int) { ++count; return *this; } NetworkRefCount& operator--(int) { --count; return *this; } int refcount() { return count; } private: std::atomic count; }; /*! * \brief the Inner IO data struct, add some inner data from IO */ class IOInner : public IO { public: //! use to flag the corresponding lite_tensor is filled, when the //! value of lite_tensor is filled, the have_sync is true, other wise false, //! this is used in async mode bool have_sync = false; //! Real input and output data location std::shared_ptr lite_tensor = nullptr; //! If the input is consists of discrete multiple tensors, lite_tensors is real //! input data location std::vector> lite_tensors; IOInner() = default; IOInner(const IO& io) { name = io.name; is_host = io.is_host; io_type = io.io_type; config_layout = io.config_layout; } }; /*! * \brief the realy network IO info when network run */ struct NetworkIOInner { std::vector inputs; std::vector outputs; }; /*! * \brief implement the Network, contain the mgb related member */ class Network::NetworkImplBase : public DynTypeObj { public: virtual ~NetworkImplBase() { NetworkRefCount::Instance()--; }; NetworkImplBase() { NetworkRefCount::Instance()++; }; //! set the config of the network, include: //! the inference device //! the other inference options, such as record_level, weight_preprocess... virtual void set_config(const Config& config) = 0; //! set the special io infomation, if not set, default io tensor will used, //! this is special for input/output is not host tensor, default the //! input/output tensors are host tensor virtual void set_io(const NetworkIO& network_io) = 0; //! only compute the output tensor in user configured virtual void compute_only_configured_output() = 0; //! get the network input and ouput tensor, the layout of which is //! sync from mge tensor virtual std::shared_ptr get_io_tensor( std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_IO) = 0; //! get the network input tensors which input consists of discrete multiple tensors, //! layout (1, c, h, w) virtual std::vector> get_discrete_tensors( std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT) { LITE_MARK_USED_VAR(io_name); LITE_MARK_USED_VAR(phase); return {}; } //! get the input tensor by index in the load_result tensormap virtual std::shared_ptr get_input_tensor(size_t index) = 0; //! get the network input tensors which input consists of discrete multiple tensors //! by index virtual std::vector> get_input_tensors(size_t index) { LITE_MARK_USED_VAR(index); return {}; } //! get the output tensor by index in the load_result output_var_list virtual std::shared_ptr get_output_tensor(size_t index) = 0; //! get all the input tensor name in the order in load return virtual std::vector get_all_input_name() const = 0; //! get all the output tensor name in the order in load return virtual std::vector get_all_output_name() const = 0; //! get the input tensor name in the order in load return virtual const char* get_input_name(size_t index) const = 0; //! get the output tensor name in the order in load return virtual const char* get_output_name(size_t index) const = 0; //! set the callback in async model virtual void set_async_callback(const AsyncCallback& callback) = 0; //! set the start callback which will execute before network forward virtual void set_start_callback(const StartCallback& callback) = 0; //! set the finish callback which will execute after network forward virtual void set_finish_callback(const FinishCallback& callback) = 0; //! load the model and get the m_load_result virtual void load_model( std::shared_ptr model_mem, size_t size, std::unordered_map separate_config_map = {}) = 0; //! forward the network with filled input data and fill the output data //! to the output tensor virtual void forward() = 0; //! in sync model, wait utile the inference finish virtual void wait() = 0; //! set device id, default device id = 0 virtual void set_device_id(int device_id) = 0; virtual int get_device_id() const = 0; virtual LiteBackend get_backend_type() const = 0; //! set stream id, default stream id = 0, if there are multi compnode in a //! model, set all the compnode stream to the stream_id virtual void set_stream_id(int stream_id) = 0; virtual int get_stream_id() const = 0; virtual LiteDeviceType get_device_type() const = 0; //! enable profile the network, a file will be generated virtual void enable_profile_performance(std::string profile_file_path) = 0; //! get static peak memory info showed by Graph visualization virtual void get_static_memory_alloc_info(const std::string& log_dir) const { LITE_MARK_USED_VAR(log_dir); LITE_THROW( "This nerworkimpl doesn't support get_static_memory_alloc_info() " "function."); } }; /******************************** friend class *****************************/ /*! * \brief friend class of Network, for convenient accessing the Network members */ class NetworkHelper { public: static bool loaded(const std::shared_ptr network) { LITE_ASSERT(network); return network->m_loaded; } static void loaded(const std::shared_ptr network, bool loaded) { LITE_ASSERT(network); network->m_loaded = loaded; } static Network::NetworkImplBase* implement(const Network* network) { LITE_ASSERT(network); return network->m_impl.get(); } static Network::NetworkImplBase* implement(const std::shared_ptr network) { LITE_ASSERT(network); return network->m_impl.get(); } static void implement( const std::shared_ptr network, std::unique_ptr impl) { LITE_ASSERT(network); network->m_impl = std::move(impl); } }; } // namespace lite // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}