# # \file generator.py # # \brief Generates the CUTLASS Library's instances # # import enum import os.path import shutil from typing import Tuple, List from lazy_file import LazyFile from library import * ################################################################################################### # class Conv2dOperation: # def __init__(self, conv_kind, conv_type, arch, tile_description, src, flt, bias, dst, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4, \ need_load_from_const = True, implicit_gemm_mode = ImplicitGemmMode.GemmNt): self.operation_kind = OperationKind.Conv2d self.conv_kind = conv_kind self.arch = arch self.tile_description = tile_description self.conv_type = conv_type self.src = src self.flt = flt self.bias = bias self.dst = dst self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor self.need_load_from_const = need_load_from_const self.implicit_gemm_mode = implicit_gemm_mode # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator return accum # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' intermediate_type = '' if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp: inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.flt.element and \ self.tile_description.math_instruction.element_a != self.accumulator_type(): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = '' unity_kernel = '' if not self.need_load_from_const: unity_kernel = '_1x1' return "%s%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ inst_shape, intermediate_type, ConvKindNames[self.conv_kind], unity_kernel, \ ShortEpilogueNames[self.epilogue_functor]) # def extended_name(self): if self.dst.element != self.tile_description.math_instruction.element_accumulator: if self.src.element != self.flt.element: extended_name = "${element_dst}_${core_name}_${element_src}_${element_flt}" elif self.src.element == self.flt.element: extended_name = "${element_dst}_${core_name}_${element_src}" else: if self.src.element != self.flt.element: extended_name = "${core_name}_${element_src}_${element_flt}" elif self.src.element == self.flt.element: extended_name = "${core_name}_${element_src}" extended_name = SubstituteTemplate(extended_name, { 'element_src': DataTypeNames[self.src.element], 'element_flt': DataTypeNames[self.flt.element], 'element_dst': DataTypeNames[self.dst.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.src.layout == self.dst.layout: layout_name = "${src_layout}_${flt_layout}" else: layout_name = "${src_layout}_${flt_layout}_${dst_layout}" layout_name = SubstituteTemplate(layout_name, { 'src_layout': ShortLayoutTypeNames[self.src.layout], 'flt_layout': ShortLayoutTypeNames[self.flt.layout], 'dst_layout': ShortLayoutTypeNames[self.dst.layout], }) return layout_name # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] warp_shape = [int(self.tile_description.threadblock_shape[idx] / self.tile_description.warp_count[idx]) for idx in range(3)] threadblock = "%dx%dx%d_%dx%dx%d_%d" % ( self.tile_description.threadblock_shape[0], self.tile_description.threadblock_shape[1], self.tile_description.threadblock_shape[2], warp_shape[0], warp_shape[1], warp_shape[2], self.tile_description.stages, ) configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}" return SubstituteTemplate( configuration_name, { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), } ) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.configuration_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv2dInstance: def __init__(self): self.template = """ // kernel instance "${operation_name}" generated by cutlass generator using Convolution = typename cutlass::conv::device::Convolution< ${element_src}, ${layout_src}, ${element_flt}, ${layout_flt}, ${element_dst}, ${layout_dst}, ${element_bias}, ${layout_bias}, ${element_accumulator}, ${conv_type}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_dst}, ${epilogue_vector_length}, ${element_accumulator}, ${element_bias}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${alignment_src}, ${alignment_filter}, ${nonuninity_kernel}, ${math_operator}, ${implicit_gemm_mode}>; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min(operation.dst.alignment * DataTypeSize[operation.dst.element], 128) / DataTypeSize[operation.dst.element]) values = { 'operation_name': operation.procedural_name(), 'conv_type': ConvTypeTag[operation.conv_type], 'element_src': DataTypeTag[operation.src.element], 'layout_src': LayoutTag[operation.src.layout], 'element_flt': DataTypeTag[operation.flt.element], 'layout_flt': LayoutTag[operation.flt.layout], 'element_dst': DataTypeTag[operation.dst.element], 'layout_dst': LayoutTag[operation.dst.layout], 'element_bias': DataTypeTag[operation.bias.element], 'layout_bias': LayoutTag[operation.bias.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'alignment_src': str(operation.src.alignment), 'alignment_filter': str(operation.flt.alignment), 'nonuninity_kernel': str(operation.need_load_from_const).lower(), 'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode] } return SubstituteTemplate(self.template, values) class EmitDeconvInstance: def __init__(self): self.template = """ // kernel instance "${operation_name}" generated by cutlass generator using Deconvolution = typename cutlass::conv::device::Deconvolution< ${element_src}, ${layout_src}, ${element_flt}, ${layout_flt}, ${element_dst}, ${layout_dst}, ${element_bias}, ${layout_bias}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_dst}, ${epilogue_vector_length}, ${element_accumulator}, ${element_bias}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${alignment_src}, ${alignment_filter}, ${nonuninity_kernel}, ${math_operator}, ${implicit_gemm_mode}>; """ def emit(self, operation): warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min(operation.dst.alignment * DataTypeSize[operation.dst.element], 128) / DataTypeSize[operation.dst.element]) values = { 'operation_name': operation.procedural_name(), 'element_src': DataTypeTag[operation.src.element], 'layout_src': LayoutTag[operation.src.layout], 'element_flt': DataTypeTag[operation.flt.element], 'layout_flt': LayoutTag[operation.flt.layout], 'element_dst': DataTypeTag[operation.dst.element], 'layout_dst': LayoutTag[operation.dst.layout], 'element_bias': DataTypeTag[operation.bias.element], 'layout_bias': LayoutTag[operation.bias.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'alignment_src': str(operation.src.alignment), 'alignment_filter': str(operation.flt.alignment), 'nonuninity_kernel': str(operation.need_load_from_const).lower(), 'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode] } return SubstituteTemplate(self.template, values) ################################################################################################### # # Generator functions for all layouts # ################################################################################################### # def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_layout, dst_type, min_cc, src_align = 32, flt_align = 32, dst_align = 128, \ skip_unity_kernel = False, implicit_gemm_mode = ImplicitGemmMode.GemmNt): operations = [] element_epilogue = DataType.f32 if conv_kind == ConvKind.Fprop: if src_layout == LayoutType.TensorNHWC: swizzling_functor = SwizzlingFunctor.ConvFpropNHWC else: swizzling_functor = SwizzlingFunctor.ConvFpropNCxHWx else: swizzling_functor = SwizzlingFunctor.ConvDgradNCxHWx # skip rule def filter_tile_with_layout(tile: TileDescription, layout: LayoutType) -> bool: return layout == LayoutType.TensorNC32HW32 and \ tile.threadblock_shape[0] % 32 != 0 # rule for bias_type and epilogues def get_bias_type_and_epilogues(tile: TileDescription, \ out_dtype: DataType) -> Tuple[DataType, List[EpilogueFunctor]]: if tile.math_instruction.element_accumulator == DataType.s32 and \ out_dtype != DataType.f32: bias_type = DataType.s32 if tile.math_instruction.element_b == DataType.u4: epilogues = [EpilogueFunctor.BiasAddLinearCombinationClamp, EpilogueFunctor.BiasAddLinearCombinationReluClamp] else: epilogues = [EpilogueFunctor.BiasAddLinearCombinationClamp, EpilogueFunctor.BiasAddLinearCombinationReluClamp, \ EpilogueFunctor.BiasAddLinearCombinationHSwishClamp] elif tile.math_instruction.element_accumulator == DataType.f32 or \ out_dtype == DataType.f32: bias_type = DataType.f32 epilogues = [EpilogueFunctor.BiasAddLinearCombination, EpilogueFunctor.BiasAddLinearCombinationRelu, \ EpilogueFunctor.BiasAddLinearCombinationHSwish] return bias_type, epilogues # rule for filter alignment def get_flt_align(tile: TileDescription) -> int: nonlocal flt_align if tile.math_instruction.opcode_class == OpcodeClass.Simt \ and tile.math_instruction.element_accumulator == DataType.s32: thread_num = tile.warp_count[0] * tile.warp_count[1] * tile.warp_count[2] * 32 flt_block = tile.threadblock_shape[0] * tile.threadblock_shape[2] \ * DataTypeSize[tile.math_instruction.element_a] load_per_thread = flt_block//thread_num if load_per_thread >= 128: flt_align = 128 elif load_per_thread >= 64: flt_align = 64 else: assert load_per_thread >= 32 flt_align = 32 return flt_align def get_dst_align(tile: TileDescription, out_layout: LayoutType) -> int: nonlocal dst_align if tile.math_instruction.opcode_class == OpcodeClass.TensorOp \ and dst_layout == LayoutType.TensorNC4HW4: dst_align = 32 return dst_align def filter_epilogue_with_conv_kind(epilogue: EpilogueFunctor, conv_kind: ConvKind) -> bool: return conv_kind == ConvKind.Dgrad \ and epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp # loop over all tile descriptions for tile in tile_descriptions: if filter_tile_with_layout(tile, dst_layout): continue bias_type, epilogues = get_bias_type_and_epilogues(tile, dst_type) flt_align = get_flt_align(tile) dst_align = get_dst_align(tile, dst_layout) for epilogue in epilogues: if filter_epilogue_with_conv_kind(epilogue, conv_kind): continue if dst_type == DataType.f32: bias_type = DataType.f32 # src = TensorDescription(tile.math_instruction.element_b, src_layout, int(src_align / DataTypeSize[tile.math_instruction.element_b])) flt = TensorDescription(tile.math_instruction.element_a, flt_layout, int(flt_align / DataTypeSize[tile.math_instruction.element_a])) bias = TensorDescription(bias_type, dst_layout, max(1, int(32 / DataTypeSize[bias_type]))) dst = TensorDescription(dst_type, dst_layout, int(dst_align / DataTypeSize[dst_type])) new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, True, implicit_gemm_mode) operations.append(new_operation) if not skip_unity_kernel: new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, False, implicit_gemm_mode) operations.append(new_operation) return operations ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitConv2dConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name) self.instance_emitter = EmitConv2dInstance() self.instance_template = """ ${operation_instance} // Derived class struct ${operation_name} : public ${operation_name}_base { }; /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.header_template = """ /* Generated by conv2d_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "conv2d_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.configuration_header = """ namespace cutlass { namespace library { // Initialize all instances void initialize_${configuration_name}(Manifest &manifest) { """ self.configuration_instance = """ using Operation_${operation_name} = cutlass::conv::device::ImplicitGemmConvolution< ${operation_name}>; manifest.append(new cutlass::library::Conv2dOperation< Operation_${operation_name}>( "${operation_name}")); """ self.configuration_epilogue = """ } """ self.epilogue_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ # def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(SubstituteTemplate(self.header_template, { 'configuration_name': self.configuration_name })) self.operations = [] return self # def emit(self, operation): self.operations.append(operation) self.configuration_file.write(SubstituteTemplate(self.instance_template, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'operation_instance': self.instance_emitter.emit(operation) })) # def __exit__(self, exception_type, exception_value, traceback): self.configuration_file.write(SubstituteTemplate(self.configuration_header, { 'configuration_name': self.configuration_name })) for operation in self.operations: self.configuration_file.write(SubstituteTemplate(self.configuration_instance, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name() })) self.configuration_file.write(self.configuration_epilogue) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ################################################################################################### ################################################################################################### # Emitters for Conv Kernel Wrapper # ################################################################################################### class EmitConvSingleKernelWrapper(): def __init__(self, kernel_path, operation, wrapper_path): self.kernel_path = kernel_path self.wrapper_path = wrapper_path self.operation = operation self.conv_wrappers = { \ ConvKind.Fprop: """ template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper( const typename Convolution::ElementSrc* d_src, const typename Convolution::ElementFilter* d_filter, const typename Convolution::ElementBias* d_bias, const typename Convolution::ElementDst* d_z, typename Convolution::ElementDst* d_dst, int* workspace, typename Convolution::ConvolutionParameter const& conv_param, typename Convolution::EpilogueOutputOp::Params const& epilogue, cudaStream_t stream, typename Convolution::ExtraParam extra_param); """, \ ConvKind.Dgrad: """ template void megdnn::cuda::cutlass_wrapper::cutlass_deconvolution_wrapper( const typename Deconvolution::ElementSrc* d_src, const typename Deconvolution::ElementFilter* d_filter, const typename Deconvolution::ElementBias* d_bias, const typename Deconvolution::ElementDst* d_z, typename Deconvolution::ElementDst* d_dst, int* workspace, typename Deconvolution::ConvolutionParameter const& conv_param, typename Deconvolution::EpilogueOutputOp::Params const& epilogue, cudaStream_t stream); """, \ } if self.operation.conv_kind == ConvKind.Fprop: self.instance_emitter = EmitConv2dInstance() else: assert self.operation.conv_kind == ConvKind.Dgrad self.instance_emitter = EmitDeconvInstance() self.header_template = """ #if !MEGDNN_TEGRA_X1 // ignore warning of cutlass #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wstrict-aliasing" #include "${wrapper_path}" """ self.instance_template = """ ${operation_instance} """ self.wrapper_template = """ ${wrapper_instance} """ self.epilogue_template = """ #pragma GCC diagnostic pop #endif """ # def __enter__(self): self.kernel_path = os.path.join(self.kernel_path, "%s.cu" % self.operation.procedural_name()) self.kernel_file = LazyFile(self.kernel_path) self.kernel_file.write(SubstituteTemplate(self.header_template, { 'wrapper_path': self.wrapper_path, })) return self # def emit(self): self.kernel_file.write(SubstituteTemplate(self.instance_template, { 'operation_instance': self.instance_emitter.emit(self.operation), })) # emit wrapper wrapper = SubstituteTemplate(self.wrapper_template, { 'wrapper_instance': self.conv_wrappers[self.operation.conv_kind], }) self.kernel_file.write(wrapper) # def __exit__(self, exception_type, exception_value, traceback): self.kernel_file.write(self.epilogue_template) self.kernel_file.close() ################################################################################################### ###################################################################################################