# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine import Parameter, Tensor, tensor from megengine.functional.distributed import ( all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter, ) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_sum(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = reduce_sum(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, None, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_broadcast(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = broadcast(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, x, port)) p1 = mp.Process(target=worker, args=(1, y, x, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_gather(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_gather(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_scatter_sum(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = reduce_scatter_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z[: shape[0] // 2], port)) p1 = mp.Process(target=worker, args=(1, y, z[shape[0] // 2 :], port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 4), (8, 10), (88, 44)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_sum(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_max(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_max(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.maximum(x, y) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_min(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_reduce_min(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.minimum(x, y) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, z, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_gather(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = gather(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, z, port)) p1 = mp.Process(target=worker, args=(1, y, None, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_scatter(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = scatter(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, x[: shape[0] // 2], port)) p1 = mp.Process(target=worker, args=(1, y, x[shape[0] // 2 :], port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_to_all(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker(rank, data, expect, port): if mge.get_device_count("gpu") < world_size: return dist.init_process_group("localhost", port, world_size, rank, rank) inp = tensor(data) output = all_to_all(inp) assert np.allclose(output.numpy(), expect) def check(shape): x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") a = np.concatenate((x[: shape[0] // 2], y[: shape[0] // 2])) b = np.concatenate((x[shape[0] // 2 :], y[shape[0] // 2 :])) p0 = mp.Process(target=worker, args=(0, x, a, port)) p1 = mp.Process(target=worker, args=(1, y, b, port)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: check(shape) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_io_remote(): world_size = 2 port = dist.get_free_ports(1)[0] server = dist.Server(port) val = np.random.rand(4, 5).astype(np.float32) def worker(rank): if mge.get_device_count("gpu") < world_size: return if rank == 0: # remote send dist.init_process_group("localhost", port, world_size, rank, rank) x = Tensor(val, device="gpu0") y = remote_send(x, 1) assert y.numpy()[0] == 0 else: # remote recv dist.init_process_group("localhost", port, world_size, rank, rank) y = remote_recv(0, val.shape, val.dtype, cn="gpu1") np.testing.assert_almost_equal(val, y.numpy()) procs = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank,)) p.start() procs.append(p) for p in procs: p.join(10) assert p.exitcode == 0