# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import BatchNorm2d def test_frozen_bn(): nchannel = 3 m = BatchNorm2d(nchannel, freeze=True) saved_var = m.running_var.numpy() saved_mean = m.running_mean.numpy() saved_wt = m.weight.numpy() saved_bias = m.bias.numpy() optim = optimizer.SGD(m.parameters(), lr=1.0) optim.zero_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with optim.record(): loss = m(data).mean() optim.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) np.testing.assert_equal(m.weight.numpy(), saved_wt) np.testing.assert_equal(m.bias.numpy(), saved_bias) np.testing.assert_almost_equal(loss.numpy(), data.mean(), 5) def test_bn_no_track_stat(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.zero_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with optim.record(): loss = m(data).sum() optim.backward(loss) optim.step() def test_bn_no_track_stat2(): nchannel = 3 m = BatchNorm2d(nchannel) # Init with track_running_stat = True m.track_running_stats = False # m.running_var and m.running_mean created during init time saved_var = m.running_var.numpy() assert saved_var is not None saved_mean = m.running_mean.numpy() assert saved_mean is not None optim = optimizer.SGD(m.parameters(), lr=1.0) optim.zero_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with optim.record(): loss = m(data).sum() optim.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) def test_bn_no_track_stat3(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) m.track_running_stats = True data = np.random.random((6, nchannel, 2, 2)).astype("float32") with pytest.raises(Exception): m(data)