/** * \file imperative/src/impl/interpreter/interpreter_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./interpreter_impl.h" #include "range/v3/all.hpp" #include "megbrain/common.h" #include "megbrain/imperative/opr_utility.h" #include "megbrain/imperative/ops/autogen.h" #include "megbrain/imperative/ops/backward_graph.h" #include "megbrain/imperative/ops/opr_attr.h" #include "megbrain/imperative/ops/utility.h" #include "megbrain/imperative/utils/stats.h" #include "megbrain/imperative/utils/to_string.h" #include "../blob_manager_impl.h" #include "../event_pool.h" #include "../op_trait.h" using namespace mgb; using namespace imperative; using namespace interpreter; using namespace interpreter::intl; namespace { auto tinfo_to_tid(SmallVector tinfo) { SmallVector tid; for (auto* ptinfo : tinfo) { tid.push_back(ptinfo->id); } return tid; }; } // namespace namespace mgb { using namespace profiler; } #if defined(_WIN32) || defined(_WIN64) #define SYMBOL_EXPORT __declspec(dllexport) #else #define SYMBOL_EXPORT __attribute__((visibility("default"))) #endif namespace mgb { /** * USAGE * * header: * namespace mgb { void imperative_log_profile(const char* message); } * * code: * mgb::imperative_log_profile("MY MESSAGE"); * **/ SYMBOL_EXPORT void imperative_log_profile_begin(const char* message) { MGB_RECORD_EVENT(CustomEvent, std::string{message}); } SYMBOL_EXPORT void imperative_log_profile_end(const char* message) { MGB_RECORD_EVENT(CustomFinishEvent, std::string{message}); } SYMBOL_EXPORT void imperative_log_profile(const char* message) { imperative_log_profile_begin(message); imperative_log_profile_end(message); } SYMBOL_EXPORT void imperative_log_profile_begin(const char* message, const char* device) { auto comp_node = CompNode::load(device); MGB_RECORD_EVENT(CustomEvent, std::string{message}, {}, comp_node); MGB_RECORD_EVENT( RecordDeviceEvent, EventPool::with_timer().alloc_shared(comp_node)); } SYMBOL_EXPORT void imperative_log_profile_end(const char* message, const char* device) { auto comp_node = CompNode::load(device); MGB_RECORD_EVENT( RecordDeviceEvent, EventPool::with_timer().alloc_shared(comp_node)); MGB_RECORD_EVENT(CustomFinishEvent, std::string{message}, {}, comp_node); } } // namespace mgb std::thread::id ChannelImpl::get_worker_tid() { return m_worker_state.tid; } ChannelImpl::ChannelState& ChannelImpl::get_channel_state() { assert_in_channel(); return m_channel_state; } ChannelImpl::WorkerState& ChannelImpl::get_worker_state() { assert_in_worker(); return m_worker_state; } void ChannelImpl::WorkQueue::on_async_queue_worker_thread_start() { sys::set_thread_name("worker"); m_owner->m_worker_state.tid = std::this_thread::get_id(); auto custom_allocator = [&](CompNode device, size_t size) { auto blob = Blob::make(device, size); m_owner->alloc_tensor_with_evict(blob.get()); return blob->storage(); }; OpDef::set_allocator(custom_allocator); BlobManager::inst()->set_allocator(custom_allocator); } // Do not use m_xxx_state directly #define m_channel_state #define m_worker_state std::unique_ptr InterpreterImpl::create_channel() { return std::make_unique(); } Interpreter& Interpreter::inst() { static InterpreterImpl inst_; return inst_; } Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); auto _ = StackManager::Guard{"Put", &state.stack_manager}; auto info = put_impl(value, no_cache); return reinterpret_cast(info); } TensorInfo* ChannelImpl::put_impl(const HostTensorND& value, bool no_cache) { if (value.empty()) { auto layout = value.layout(); layout.init_contiguous_stride(); const_cast(value).reset(value.storage(), layout); } auto info = alloc(); constexpr int size_threshold = TensorShape::MAX_NDIM; init(info, {value.layout(), value.comp_node()}); if (value.layout().total_nr_elems() <= size_threshold) { info->h_value = value; info->desc.value = value.proxy_to_default_cpu(); } if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), Put{info, value, no_cache}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), Put{info, value, no_cache}, }); } if (m_async_level == 0) { sync_impl(); info->desc.comp_node.sync(); auto err = info->desc.comp_node.check_async_error(); mgb_assert(!err, "%s", err->what()); } return info; } Handle ChannelImpl::put(const DeviceTensorND& data, const HostTensorND& hvalue) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); return reinterpret_cast(put_impl(data, hvalue)); } TensorInfo* ChannelImpl::put_impl( const DeviceTensorND& data, const HostTensorND& hvalue) { auto& state = get_channel_state(); auto _ = StackManager::Guard{"Put", &state.stack_manager}; auto info = alloc(); MGB_RECORD_EVENT(TensorCommandEvent, info->id, TensorCommandKind::Put); constexpr int size_threshold = TensorShape::MAX_NDIM; init(info, {data.layout(), data.comp_node()}); if ((!hvalue.empty()) && info->desc.layout.total_nr_elems() <= size_threshold) { info->desc.value = hvalue.proxy_to_default_cpu(); } info->ptr = Tensor::make(data, hvalue); MGB_RECORD_EVENT( TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, data.raw_ptr()); info->status = TensorInfo::Produced; MGB_RECORD_EVENT(TensorCommandFinishEvent, info->id, TensorCommandKind::Put); return info; } void ChannelImpl::del(Handle handle) { MGB_LOCK_GUARD(m_spin); if (!check_available()) { return; } del_impl(handle); } void ChannelImpl::del_impl(Handle handle) { mgb_assert(m_valid_handle.count(handle), "invalid handle: %p", handle); auto* info = reinterpret_cast(handle); m_valid_handle.erase(handle); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), Del{info}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), Del{info}, }); } } void ChannelImpl::drop(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); if (state.options.enable_drop) { mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto* info = reinterpret_cast(handle); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), Drop{info}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), Drop{info}, }); } } } void ChannelImpl::dispatch_default_cpu( std::shared_ptr op, const SmallVector& input_infos, const SmallVector& input_descs, SmallVector* outputs) { auto& state = get_channel_state(); auto name = op->trait()->make_name(*op); auto _ = StackManager::Guard(name, &state.stack_manager); auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); MGB_RECORD_EVENT(ShapeInferEvent, validated); SmallVector input_tensornds; CompNode output_cn; { MGB_LOCK_GUARD(m_mutex); for (auto&& info : input_infos) { auto input_cn = info->desc.comp_node; if (!output_cn.valid()) { output_cn = input_cn; } else { mgb_assert(output_cn == input_cn, "cannot decide output comp node"); } if (info->ptr && info->ptr->try_get_value()) { input_tensornds.emplace_back( info->ptr->get_value().proxy_to_default_cpu()); } else { // We assign h_value before drop ptr mgb_assert(!info->h_value.empty(), "inp->h_value is empty!"); input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu()); } } } SmallVector output_tensornds; for (auto&& desc : output_descs) { // TODO: may conflict with condtake, which need alloc inside mgb_assert(!desc.layout.is_empty()); // use HostTensorND alloc_host for cuda pinned memory output_tensornds.emplace_back( HostTensorND(output_cn, desc.layout).proxy_to_default_cpu()); } uint64_t op_id = Profiler::next_id(); if (op->trait()->apply_on_device_tensornd) { OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds); } else { // proxy to apply_on_physical_tensor SmallVector input_tensors; for (auto&& input_tensornd : input_tensornds) { input_tensors.push_back(Tensor::make( input_tensornd, HostTensorND::make_proxy(input_tensornd))); } auto output_tensors = OpDef::apply_on_physical_tensor( *op, input_tensors, output_descs, validated); for (size_t i = 0; i < output_tensors.size(); ++i) { output_tensornds[i].copy_from_fixlayout(output_tensors[i]->dev_tensor()); } } SmallVector output_infos; for (auto&& tensornd : output_tensornds) { HostTensorND host_tensornd = HostTensorND::make_proxy(tensornd).proxy_to_comp_node(output_cn); // use `put` for consistency auto info = reinterpret_cast(put_impl(host_tensornd, false)); mgb_assert(info->desc.layout.ndim != 0); output_infos.push_back(info); outputs->push_back(reinterpret_cast(info)); } auto op_info_getter = [op] { std::unordered_map op_info; auto props = OpDef::props(*op); for (auto&& [key, value] : props) { op_info[key] = value; } return op_info; }; MGB_RECORD_EVENT( OpDispatchEvent, op_id, name, op_info_getter, tinfo_to_tid(input_infos), tinfo_to_tid(output_infos), state.stack_manager.dump()); } void ChannelImpl::dispatch_kernel( std::shared_ptr op, const SmallVector& input_infos, const SmallVector& input_descs, SmallVector* outputs) { auto& state = get_channel_state(); auto& options = state.options; auto name = op->trait()->make_name(*op); auto _ = StackManager::Guard{name, &state.stack_manager}; auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); MGB_RECORD_EVENT(ShapeInferEvent, validated); SmallVector output_infos; output_infos.reserve(output_descs.size()); outputs->reserve(output_descs.size()); for (int i = 0; i < output_descs.size(); ++i) { auto&& desc = output_descs[i]; auto info = alloc(); init(info, desc); // make sure desc's value is consistent with h_value if (!info->desc.value.empty()) { info->h_value = HostTensorND::make_proxy(desc.value) .proxy_to_comp_node(desc.comp_node); } output_infos.push_back(info); outputs->push_back(reinterpret_cast(info)); } ApplyOp cmd{Profiler::next_id(), std::move(op), std::move(input_infos), std::move(output_infos), std::move(output_descs), validated}; if (Profiler::is_profiling()) { auto op_info_getter = [op = cmd.op] { std::unordered_map op_info; auto props = OpDef::props(*op); for (auto&& [key, value] : props) { op_info[key] = value; } return op_info; }; MGB_RECORD_EVENT( OpDispatchEvent, cmd.id, name, op_info_getter, tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs), state.stack_manager.dump()); m_worker.add_task( {Profiler::next_id(), std::move(cmd), get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), std::move(cmd), }); } if (!validated && options.async_level == 1) { sync_impl(); } else if (options.async_level == 0) { sync_impl(); // check device error for (auto&& oup : *outputs) { auto info = reinterpret_cast(oup); info->ptr->comp_node().sync(); auto err = info->ptr->comp_node().check_async_error(); mgb_assert(!err, "%s", err->what()); } } } SmallVector ChannelImpl::apply_op( std::shared_ptr op, const SmallVector& inputs) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto* input = reinterpret_cast(inputs[0]); if (op->same_type() && input->desc.layout.ndim) { size_t ndim = input->desc.layout.ndim; auto& gvs = op->cast_final_safe(); if (gvs.axis == MEGDNN_MAX_NDIM) { HostTensorND shape_tensor{input->desc.comp_node, {ndim}, dtype::Int32()}; DeviceTensorND shape_tensor_device = shape_tensor.proxy_to_default_cpu(); cg::copy_shape_to_tensor_value(shape_tensor_device, input->desc.layout); return {reinterpret_cast(put_impl(shape_tensor, false))}; } } return apply_op_impl(std::move(op), inputs); } SmallVector ChannelImpl::apply_op_impl( std::shared_ptr op, const SmallVector& inputs) { auto& state = get_channel_state(); for (auto i : inputs) { mgb_assert( m_valid_handle.find(i) != m_valid_handle.end(), "invalid handle: %p", i); } SmallVector input_infos; SmallVector input_descs; { MGB_LOCK_GUARD(m_info_spin); for (auto i : inputs) { auto info = reinterpret_cast(i); mgb_assert( !info->invalid, "an input tensor is unusable due to previous error"); input_infos.push_back(info); input_descs.push_back(info->desc); } } SmallVector outputs; DispatchMode dispatch_mode = state.options.enable_host_compute ? OpDef::decide_dispatch_mode(*op, input_descs) : DispatchMode::KERNEL; switch (dispatch_mode) { case DEFAULT_CPU: { dispatch_default_cpu(op, input_infos, input_descs, &outputs); break; } case KERNEL: { dispatch_kernel(op, input_infos, input_descs, &outputs); break; } } return outputs; } HostTensorND ChannelImpl::get_value(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto info = reinterpret_cast(handle); // donnot use info->value_fetched, it's unsafe mgb_assert(!info->invalid, "tensor is unusable due to previous error"); return wait_tensor(info, TensorProp::HostValue)->get_value(); } TensorShape ChannelImpl::get_shape(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto info = reinterpret_cast(handle); if (info->desc.layout.ndim != 0) { return info->desc.layout; } TensorShape ret = wait_tensor(info, TensorProp::Shape)->layout(); mgb_assert(ret.ndim != 0); return ret; } DType ChannelImpl::get_dtype(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto info = reinterpret_cast(handle); MGB_RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::DType); auto ret = info->desc.layout.dtype; mgb_assert(ret.valid()); return ret; } CompNode ChannelImpl::get_device(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto info = reinterpret_cast(handle); MGB_RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::Device); auto ret = info->desc.comp_node; mgb_assert(ret.valid()); return ret; } DeviceTensorND ChannelImpl::get_dev_tensor(Handle handle) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); mgb_assert( m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p", handle); auto info = reinterpret_cast(handle); return wait_tensor(info, TensorProp::DevValue)->dev_tensor(); } void ChannelImpl::sync() { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); sync_impl(); } void ChannelImpl::sync_impl() { m_worker.wait_all_task_finish(); MGB_LOCK_GUARD(m_mutex); check_worker_exc_unsafe(); } void ChannelImpl::close() { MGB_LOCK_GUARD(m_spin); if (!check_available()) { return; } std::vector valid_handles(m_valid_handle.begin(), m_valid_handle.end()); for (auto* handle : valid_handles) { del_impl(handle); } mgb_assert(m_valid_handle.empty()); mgb_log_debug("%ld tensor exists before channel close", (long)valid_handles.size()); sync_impl(); m_closed = true; } size_t ChannelImpl::get_option(std::string name) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); return state.options.get_option(name); } void ChannelImpl::set_option(std::string name, size_t value) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); state.options.set_option(name, value); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), SetOption{name, value}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), SetOption{name, value}, }); } } void ChannelImpl::clear_candidates() { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); m_dtr.candidates.clear(); } TensorInfo* ChannelImpl::alloc() { auto& state = get_channel_state(); auto info = [this] { MGB_LOCK_GUARD(m_pool_spin); return m_pool.alloc(); }(); info->id = Profiler::next_id(); if (Profiler::is_profiling()) { size_t tensor_id = state.stack_manager.current()->next_id("tensor"); info->name = state.stack_manager.dump().to_string() + ssprintf(":%zu", tensor_id); } return info; } void ChannelImpl::init(TensorInfo* info, LogicalTensorDesc desc) { m_valid_handle.insert(reinterpret_cast(info)); MGB_RECORD_EVENT(TensorDeclareEvent, info->id, info->name); info->status = TensorInfo::Allocated; info->desc = desc; } void ChannelImpl::do_drop(TensorInfo* ptr, bool user = false) { if (!ptr->producer) { if (user) { mgb_log_warn( "the input that produced tensor %p has been deleted, this drop " "operation will be ignored", ptr); } return; } if (ptr->evict_type != EvictType::NONE) { return; } ptr->evict_type = EvictType::DROP; ptr->status = TensorInfo::Dropped; release_tensor(ptr); } void ChannelImpl::free(TensorInfo* ptr) { auto& state = get_worker_state(); if (state.options.enable_dtr_auto_drop) { // Evicting a tensor, rather than freeing it, can avoid pinning // potentially exploding amounts of memory and allow us to save // more memory. ptr->allow_delete = true; if (!ptr->ref_cnt) { recursive_free(ptr); } else { do_drop(ptr); } } else { real_free(ptr); } } void ChannelImpl::recursive_free(TensorInfo* ptr) { MGB_RECORD_EVENT(TensorCommandEvent, ptr->id, TensorCommandKind::RecFree); SmallVector inps; if (ptr->producer) { for (auto i : ptr->producer->inputs) { if (i && --i->ref_cnt == 0) { inps.push_back(i); } } } real_free(ptr); for (auto i : inps) { if (i->allow_delete) { recursive_free(i); } } MGB_RECORD_EVENT(TensorCommandFinishEvent, ptr->id, TensorCommandKind::RecFree); } void ChannelImpl::real_free(TensorInfo* ptr) { auto& state = get_worker_state(); if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { m_dtr.erase_candidate(ptr); } detach_users(ptr); ptr->detach_producer(); bool has_value = ptr->ptr != nullptr; if (has_value) { MGB_RECORD_EVENT(TensorReleaseEvent, ptr->id); } MGB_RECORD_EVENT(TensorEraseEvent, ptr->id, ptr->ptr_use_count); ptr->status = TensorInfo::Deleted; MGB_LOCK_GUARD(m_pool_spin); m_pool.free(ptr); } ChannelImpl::ChannelImpl() : m_worker(this) {} ChannelImpl::~ChannelImpl() { close(); } void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr) { auto& state = get_worker_state(); MGB_LOCK_GUARD(m_mutex); m_dtr.update_used_time(dest); MGB_RECORD_EVENT( TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node(), ptr->dev_tensor(false).raw_ptr()); // update tensor desc for static infer if (dest->desc.layout.ndim) { mgb_assert( dest->desc.layout.eq_shape(ptr->layout()), "shape infer error, %s vs %s", dest->desc.layout.to_string().c_str(), ptr->layout().to_string().c_str()); } // in order to avoid performance impact, // memory forwarding is disabled when DTR is enabled if (state.options.enable_dtr_auto_drop) { ptr->to_contiguous_inplace(); } dest->desc.layout = ptr->layout(); dest->desc.comp_node = ptr->comp_node(); dest->memory = ptr->blob()->size(); dest->ptr = std::move(ptr); dest->evict_type = EvictType::NONE; dest->status = TensorInfo::Produced; if (dest->pinned == 0 && dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { m_dtr.insert_candidate(dest); } notify_tensor_unsafe(dest); } void ChannelImpl::release_tensor(TensorInfo* dest) { MGB_RECORD_EVENT(TensorReleaseEvent, dest->id); MGB_LOCK_GUARD(m_mutex); dest->ptr.reset(); auto& state = get_worker_state(); if (dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { m_dtr.erase_candidate(dest); } } void ChannelImpl::regenerate(TensorInfo* dest) { if (dest->evict_type == EvictType::DROP) { auto&& path = dest->producer; m_apply_stack.push( {ApplyOp{path->id, path->op, path->inputs, path->outputs, path->outputs_descs}, 0, dest, "dtr"}); if (!m_applying) flush_apply_stack(); } } void ChannelImpl::do_apply_op(const ApplyOp& cmd, std::string reason) { using namespace ranges; using namespace ranges::views; auto& state = get_worker_state(); bool profiling_device = Profiler::is_profiling() && Profiler::get_option("profile_device", 0); uint64_t apply_id = cmd.id; SmallVector inputs; inputs.reserve(cmd.inputs.size()); // refcnt == 1, owners: [TensorInfo::ptr] for (auto i : cmd.inputs) { mgb_assert(i->ptr, "Invalid input tensor ptr!"); // refcnt ++, owners: [i->ptr, tensor_inputs] // tensor_inputs.push_back(i->ptr); inputs.push_back(i->ptr); } if (state.options.enable_dtr_auto_drop && state.options.dtr_eviction_threshold > 0) { auto_evict(0); } auto apply_on_physical_tensor = [&](auto&& self, const OpDef& def, SmallVector&& inputs, SmallVector& output_descs, const bool& validated) -> SmallVector { if (def.trait()->make_forward_graph) { auto apply_functor = [&](std::shared_ptr op, SmallVector inputs, size_t nr_outputs) -> SmallVector { auto opname = op->trait()->make_name(*op); imperative_log_profile_begin(opname.c_str()); auto outputs = self(self, *op, std::move(inputs), output_descs, false); imperative_log_profile_end(opname.c_str()); return outputs; }; auto const_functor = [&](TensorPtr value) -> TensorPtr { return value; }; // apply recursivily SmallVector input_descs; for (auto&& input : inputs) { input_descs.push_back({{{}, input->dtype()}, input->comp_node()}); } auto forward_graph = OpDef::make_forward_graph(def, input_descs); auto outputs = forward_graph.apply( inputs, apply_functor, const_functor); return outputs; } // Check Input Layout // Get the input layout constraints, and if the constraint is not satisfied // inplace update the layout and blob to make the tensor contiguous auto&& constraints = OpDef::get_input_layout_constraint(def, inputs); for (size_t idx = 0; idx < inputs.size(); ++idx) { auto&& layout_checker = constraints[idx]; if (layout_checker) { inputs[idx]->to_contiguous_inplace(layout_checker); } } return OpDef::apply_on_physical_tensor( def, std::move(inputs), output_descs, validated); }; MGB_RECORD_EVENT(OpExecuteEvent, apply_id, {}, reason); SmallVector> kernels; if (profiling_device) { // Collecting devices SmallVector devices; for (auto&& i : concat(cmd.inputs, cmd.outputs)) { if (i != nullptr && count(devices, i->desc.comp_node) == 0) { devices.push_back(i->desc.comp_node); kernels.push_back({i->desc.comp_node, Profiler::next_id()}); } } } for (auto* input : cmd.inputs) { auto input_id = input->id; MGB_RECORD_EVENT(OpInputEvent, input_id); MGB_RECORD_EVENT(TensorUsageEvent, input_id); MGB_RECORD_EVENT(OpInputFinishEvent, input_id); } // Before wait // TODO: split operator wait and execute so that OpWait could be corrected recorded. // Before execute for (auto&& [device, kernel_id] : kernels) { MGB_RECORD_EVENT(KernelLaunchEvent, apply_id, kernel_id, device); MGB_RECORD_EVENT_IF( (Profiler::get_option("profile_device", 0)), RecordDeviceEvent, Timer::record_device(device)); } // Apply op SmallVector output_descs; for (auto i : cmd.outputs_descs) { output_descs.push_back(i); } // Here std::move is REQUIRED for removing duplicated references. auto outputs = apply_on_physical_tensor( apply_on_physical_tensor, *cmd.op, std::move(inputs), output_descs, cmd.validated); // After execute for (auto&& [device, kernel_id] : kernels) { MGB_RECORD_EVENT_IF( (Profiler::get_option("profile_device", 0)), RecordDeviceEvent, Timer::record_device(device)); MGB_RECORD_EVENT(KernelLaunchFinishEvent, apply_id, kernel_id, device); } // End profiling operator mgb_assert(outputs.size() == cmd.outputs.size()); for (size_t i = 0; i < outputs.size(); ++i) { auto output = cmd.outputs[i]; if (mgb_unlikely(output == nullptr)) { MGB_RECORD_EVENT(OpOutputEvent, 0); MGB_RECORD_EVENT(OpOutputFinishEvent, 0); } else if (mgb_unlikely(output->ptr != nullptr)) { MGB_RECORD_EVENT(OpOutputEvent, output->id); MGB_RECORD_EVENT(OpOutputFinishEvent, output->id); } else { MGB_RECORD_EVENT(OpOutputEvent, output->id); produce_tensor(output, outputs[i]); MGB_RECORD_EVENT(OpOutputFinishEvent, output->id); sample_on_device(output->desc.comp_node, false); } } if (state.options.enable_dtr_auto_drop) { double estimate_compute_time = 0; for (auto i : cmd.inputs) { estimate_compute_time += i->memory; } for (auto i : outputs) { estimate_compute_time += i->blob()->size(); } m_dtr.estimate_timestamp += estimate_compute_time / 1e8; for (auto i : cmd.outputs) { if (i != nullptr) { i->compute_time = estimate_compute_time; } } m_dtr.unpin(cmd.inputs, state); } MGB_RECORD_EVENT(OpExecuteFinishEvent, apply_id, {}, reason); // End profiling operator } void ChannelImpl::flush_apply_stack() { m_applying = true; auto& state = get_worker_state(); while (!m_apply_stack.empty()) { auto& [cmd, idx, recomp, reason] = m_apply_stack.top(); // cmd.inputs[0~idx-1] is in memory if (idx == 0) { if (state.options.enable_dtr_auto_drop) { m_dtr.pin(cmd.inputs); } if (recomp) { MGB_RECORD_EVENT( TensorCommandEvent, recomp->id, TensorCommandKind::ReGen); } } bool regen = false; for (size_t i = idx; i < cmd.inputs.size(); i++) { auto&& p = cmd.inputs[i]; if (state.options.enable_dtr_auto_drop) { m_dtr.update_used_time(p); } if (!p->ptr && p->evict_type != EvictType::NONE) { idx = i + 1; regenerate(p); // add ApplyOp to the stack regen = true; break; } } if (regen) continue; // the required input tensors are already in memory auto [cmd_backup, recomp_backup, reason_backup] = std::make_tuple(cmd, recomp, reason); m_apply_stack.pop(); do_apply_op(cmd_backup, reason_backup); if (recomp_backup) { MGB_RECORD_EVENT( TensorCommandFinishEvent, recomp_backup->id, TensorCommandKind::ReGen); for (auto o : cmd_backup.outputs) { if (o) { m_dtr.update_dsu_after_recompute(o); } } } } m_applying = false; } bool ChannelImpl::auto_evict(size_t force_num) { auto& state = get_worker_state(); if (!m_dtr.comp_node.valid()) { return false; } size_t current_memory = m_dtr.comp_node.get_used_memory(); size_t flag = false; while ((state.options.dtr_eviction_threshold > 0 && current_memory > state.options.dtr_eviction_threshold) || force_num > 0) { MGB_RECORD_EVENT(AutoEvictEvent); sample_on_device(m_dtr.comp_node, false); auto best = m_dtr.find_best_tensor(state.options.enable_dtr_sqrt_sampling); if (!best) { MGB_RECORD_EVENT(AutoEvictFinishEvent); break; } if (best->ptr.unique() && best->ptr->blob().unique()) { current_memory -= best->memory; if (force_num > 0) { force_num--; } flag = true; } do_drop(best); if (best->evict_type == EvictType::DROP) { m_dtr.update_dsu_after_evict(best); } sample_on_device(m_dtr.comp_node, false); MGB_RECORD_EVENT(AutoEvictFinishEvent); } return flag; } void ChannelImpl::detach_users(TensorInfo* dest) { SmallVector users = dest->users; for (auto* user : users) { SmallVector outputs = user->outputs; SmallVector inputs = user->inputs; for (auto* output : outputs) { // When a `ComputePath` is detach from it's input, // there is no need to reserve it, // so we detach all output of this path // to decrease it's `ref_cnt` to zero. if (output == nullptr) { continue; } regenerate(output); output->detach_producer(); for (auto* input : inputs) { input->ref_cnt--; } } // now user is dead } mgb_assert(dest->users.empty(), "ComputePath leaking"); } bool ChannelImpl::check_available() { return !m_closed; } TensorPtr ChannelImpl::wait_tensor(TensorInfo* info, TensorProp prop) { std::unique_lock lock(m_mutex); mgb_assert(!m_waitee, "duplicate waitee"); m_waitee = info; m_waitee_id = Profiler::next_id(); MGB_RECORD_EVENT(TensorWaitPropEvent, info->id, m_waitee_id, prop); bool require_host = prop == TensorProp::HostValue; auto host_available = [&] { return info->ptr && info->ptr->value_fetched(); }; bool wait_host = false; if (require_host && !host_available()) { // avoid dead lock lock.unlock(); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), GetValue{info}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), GetValue{info}, }); } lock.lock(); wait_host = true; } m_cv.wait(lock, [&]() { check_worker_exc_unsafe(); return require_host ? host_available() : static_cast(info->ptr); }); MGB_RECORD_EVENT(TensorWaitPropFinishEvent, info->id, m_waitee_id, prop); m_waitee = nullptr; if (wait_host) { auto err = info->ptr->comp_node().check_async_error(); mgb_assert(!err, "%s", err->what()); } return info->ptr; } void ChannelImpl::notify_tensor_unsafe(TensorInfo* info) { if (info == m_waitee) { MGB_RECORD_EVENT(TensorNotifyPropEvent, info->id); m_cv.notify_all(); } } std::unordered_set ChannelImpl::collect_valid_tensors() { std::unordered_set valid_tensors; for (auto* handle : m_valid_handle) { auto* info = reinterpret_cast(handle); valid_tensors.insert(info); } return valid_tensors; } void ChannelImpl::alloc_tensor_with_evict(Blob* x) { bool in_worker = (get_worker_tid() == std::this_thread::get_id()); auto reserve_size = [&](size_t size) { if (!m_dtr.comp_node.valid()) { return false; } while (size > m_dtr.comp_node.get_max_block_size_available()) { bool evict_suc = auto_evict(1); if (!evict_suc) return false; } return true; }; auto pre_level = set_log_level(LogLevel::NO_LOG); if (in_worker) { reserve_size(x->size()); } MGB_TRY { BlobManager::inst()->alloc_direct(x, x->size()); } MGB_CATCH(MemAllocError&, { bool suc = false; if (in_worker) { while (!suc) { if (!auto_evict(1)) { break; } MGB_TRY { BlobManager::inst()->alloc_direct(x, x->size()); } MGB_CATCH(MemAllocError&, { continue; }); suc = true; } } if (!suc) { set_log_level(pre_level); mgb_log_warn( "reallocating all cuda memory to alleviate fragmentation, the " "performance may be affected"); set_log_level(LogLevel::NO_LOG); imperative_log_profile_begin("defrag"); BlobManager::inst()->defrag(x->comp_node()); imperative_log_profile_end("defrag"); BlobManager::inst()->alloc_direct(x, x->size()); } }); set_log_level(pre_level); } void ChannelImpl::process_one_task(Command& icmd) { using namespace ranges; using namespace ranges::views; auto& state = get_worker_state(); auto& options = state.options; // TODO: remove std::visit for support osx 10.12 auto cmd_visitor = [&](const auto& cmd) { using T = std::decay_t; if constexpr (std::is_same_v) { MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Put); MGB_RECORD_EVENT_IF( (Profiler::get_option("profile_device", 0)), RecordDeviceEvent, Timer::record_device(cmd.value.comp_node())); auto value = cmd.no_cache ? std::make_shared(cmd.value) : Tensor::make(cmd.value); MGB_RECORD_EVENT_IF( (Profiler::get_option("profile_device", 0)), RecordDeviceEvent, Timer::record_device(cmd.value.comp_node())); produce_tensor(cmd.dest, std::move(value)); MGB_RECORD_EVENT( TensorCommandFinishEvent, cmd.dest->id, TensorCommandKind::Put); sample_on_device(cmd.dest->desc.comp_node, false); } else if constexpr (std::is_same_v) { for (auto& i : cmd.inputs) { if (mgb_unlikely(i->invalid)) { MGB_LOCK_GUARD(m_mutex); for (auto& i : cmd.outputs) { i->invalid = true; } return; } } if (state.options.enable_dtr_auto_drop) { m_apply_stack.push({cmd, 0, nullptr, "cmd"}); flush_apply_stack(); for (size_t i = 0; i < cmd.outputs.size(); ++i) { auto output = cmd.outputs[i]; if (output == nullptr) { continue; } output->dsu_ptr = std::make_shared(output->compute_time); } } else { do_apply_op(cmd, "cmd"); } if (state.options.enable_drop && state.options.record_computing_path) { auto is_inplace = [](std::tuple tuple2) { auto& input = std::get<0>(tuple2); auto& output = std::get<1>(tuple2); if (!input->ptr || !output->ptr) { return false; } return input->ptr->blob()->storage() == output->ptr->blob()->storage(); }; // FIXME: do not use opname as identifier auto get_name = [](const OpDef& opdef) { if (auto attr = opdef.try_cast_final()) { return attr->type.c_str(); } return opdef.dyn_typeinfo()->name; }; auto is_cross_cn = [comp_node = m_dtr.comp_node](TensorInfo* info) { return info->desc.comp_node != comp_node; }; bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn); bool inplace = any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace); if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) { TensorInfo::ComputePath::make( cmd.id, cmd.op, cmd.inputs, cmd.outputs, cmd.outputs_descs); size_t detach_cnt = 0; if (!strcmp(get_name(*cmd.op), "BatchNorm") && cmd.outputs.size() == 6) { cmd.outputs[0]->detach_producer(); // detach running_mean cmd.outputs[1]->detach_producer(); // detach running_var for (auto input : cmd.inputs) { input->ref_cnt -= 2; } } for (auto output : cmd.outputs) { if (output->producer && !output->size_exceeds_thd( state.options.dtr_evictee_minimum_size)) { output->detach_producer(); detach_cnt++; } } for (auto input : cmd.inputs) { input->ref_cnt -= detach_cnt; } } } } else if constexpr (std::is_same_v) { MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Del); CompNode device = cmd.dest->desc.comp_node; uint64_t tensor_id = cmd.dest->id; free(cmd.dest); MGB_RECORD_EVENT( TensorCommandFinishEvent, tensor_id, TensorCommandKind::Del); sample_on_device(device, false); } else if constexpr (std::is_same_v) { if (cmd.dest->invalid) return; imperative_log_profile_begin("GetValue"); if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) { regenerate(cmd.dest); } cmd.dest->ptr->fetch_value(); MGB_LOCK_GUARD(m_mutex); notify_tensor_unsafe(cmd.dest); imperative_log_profile_end("GetValue"); } else if constexpr (std::is_same_v) { if (cmd.dest->invalid) return; MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Drop); do_drop(cmd.dest, true); MGB_RECORD_EVENT( TensorCommandFinishEvent, cmd.dest->id, TensorCommandKind::Drop); } else if constexpr (std::is_same_v) { options.set_option(cmd.key, cmd.value); } else if constexpr (std::is_same_v) { MGB_RECORD_EVENT(StartProfileEvent); CompNode::sync_all(); for (auto* info : cmd.capture_tensors) { MGB_RECORD_EVENT(TensorDeclareEvent, info->id, info->name); if (info->status == TensorInfo::Produced) { // TODO: handle drop MGB_RECORD_EVENT( TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, info->ptr->dev_tensor().raw_ptr()); } } CompNode::foreach ([&](CompNode device) { sample_on_device(device, true); MGB_RECORD_EVENT_IF( (Profiler::get_option("profile_device", 0)), RecordDeviceEvent, Timer::record_device(device)); }); MGB_RECORD_EVENT(StartProfileFinishEvent); } else if constexpr (std::is_same_v) { MGB_RECORD_EVENT(StopProfileEvent); for (auto* info : cmd.escape_tensors) { bool has_value = info->status == TensorInfo::Produced; if (has_value) { MGB_RECORD_EVENT(TensorReleaseEvent, info->id); } MGB_RECORD_EVENT(TensorEraseEvent, info->id); } CompNode::foreach ( [&](CompNode device) { sample_on_device(device, true); }); MGB_RECORD_EVENT(StopProfileFinishEvent); } else if constexpr (std::is_same_v) { MGB_RECORD_EVENT(ScopeEvent, cmd.scope_name); } else if constexpr (std::is_same_v) { MGB_RECORD_EVENT(ScopeFinishEvent, cmd.scope_name); } else { static_assert(!std::is_same_v); } }; std::visit( [&](const auto& cmd) { using T = std::decay_t; if (!options.catch_worker_execption) { cmd_visitor(cmd); return; } try { cmd_visitor(cmd); } catch (...) { MGB_LOCK_GUARD(m_mutex); if constexpr (std::is_same_v) { for (auto oup : cmd.outputs) { oup->invalid = true; } } else if constexpr (std::is_same_v) { cmd.dest->invalid = true; } m_worker_exc = std::current_exception(); MGB_RECORD_EVENT(WorkerExceptionEvent); if (m_waitee) { notify_tensor_unsafe(m_waitee); } } }, icmd.data); } void ChannelImpl::check_worker_exc_unsafe() { if (m_worker_exc) { // for reuse interpreter_for_py after some exception tests m_waitee = nullptr; std::exception_ptr exc; std::swap(exc, m_worker_exc); try { std::rethrow_exception(exc); } catch (...) { throw AsyncError(); } } } void ChannelImpl::start_profile() { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto capture_tensors = collect_valid_tensors(); if (capture_tensors.size() > 0) { if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), StartProfile{std::move(capture_tensors)}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), StartProfile{std::move(capture_tensors)}, }); } } } void ChannelImpl::stop_profile() { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto escape_tensors = collect_valid_tensors(); if (escape_tensors.size() > 0) { if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), StopProfile{std::move(escape_tensors)}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), StopProfile{std::move(escape_tensors)}, }); } } } void ChannelImpl::push_scope(std::string name) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); state.stack_manager.enter(name); MGB_RECORD_EVENT(ScopeEvent, name); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), PushScope{name}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), PushScope{name}, }); } } void ChannelImpl::pop_scope(std::string name) { MGB_LOCK_GUARD(m_spin); mgb_assert(check_available(), "Channel already closed"); auto& state = get_channel_state(); state.stack_manager.exit(name); MGB_RECORD_EVENT(ScopeFinishEvent, name); if (Profiler::is_profiling()) { m_worker.add_task( {Profiler::next_id(), PopScope{name}, get_channel_state().stack_manager.dump()}); } else { m_worker.add_task({ Profiler::next_id(), PopScope{name}, }); } } void ChannelImpl::assert_in_channel() { mgb_assert( get_worker_tid() != std::this_thread::get_id(), "this method cannot be called in worker thread"); } void ChannelImpl::assert_in_worker() { mgb_assert( get_worker_tid() == std::this_thread::get_id(), "this method can only be called in worker thread"); } void ChannelImpl::sample_on_device(CompNode device, bool force) { if (!Profiler::is_profiling()) { return; } if (!force) { thread_local int last_sample_id = 0; int sample_rate = Profiler::get_option("sample_rate", 0); if (!sample_rate || ((++last_sample_id) % sample_rate != 0)) { return; } } MGB_RECORD_EVENT(SampleDeviceEvent, device); auto [total, free] = device.get_mem_status_bytes(); MGB_RECORD_EVENT(SampleDeviceFinishEvent, device, total, free); } void ChannelImpl::DynamicSublinear::pin(const SmallVector& vec) { for (auto i : vec) { i->pin(); erase_candidate(i); } } void ChannelImpl::DynamicSublinear::unpin( const SmallVector& vec, WorkerState& state) { for (auto i : vec) { i->unpin(); if (i->pinned == 0 && i->size_exceeds_thd(state.options.dtr_evictee_minimum_size) && i->cand_index == UINT_MAX) { insert_candidate(i); } } } void ChannelImpl::DynamicSublinear::update_dsu_after_recompute(TensorInfo* ptr) { auto&& dsu_fa = find_father(ptr->dsu_ptr); dsu_fa->t -= ptr->compute_time; ptr->dsu_ptr->parent.reset(); ptr->dsu_ptr->t = ptr->compute_time; } void ChannelImpl::DynamicSublinear::update_dsu_after_evict(TensorInfo* ptr) { for (auto i : ptr->producer->inputs) { if (i->evict_type == EvictType::DROP) { merge(i->dsu_ptr, ptr->dsu_ptr); } } for (auto i : ptr->producer->outputs) { if (i && i->evict_type == EvictType::DROP) { merge(ptr->dsu_ptr, i->dsu_ptr); } } } double ChannelImpl::DynamicSublinear::estimate_neighbor_cost(TensorInfo* ptr) { double cost = 0; for (auto i : ptr->producer->inputs) { if (i->evict_type == EvictType::DROP) { double t = find_father(i->dsu_ptr)->t; if (t < i->compute_time) { t = i->compute_time; } cost += t; } } for (auto i : ptr->producer->outputs) { if (i && i->evict_type == EvictType::DROP) { double t = find_father(i->dsu_ptr)->t; if (t < i->compute_time) { t = i->compute_time; } cost += t; } } return cost; } TensorInfo* ChannelImpl::DynamicSublinear::find_best_tensor( bool enable_dtr_sqrt_sampling = false) { if (candidates.empty()) return nullptr; double min_msps = -1; TensorInfo* best = nullptr; size_t sz = 1; if (enable_dtr_sqrt_sampling) { while (sz * sz <= candidates.size()) sz++; sz--; } else { sz = candidates.size(); } size_t ti = rand() % sz; for (size_t vi = 0; vi < sz; vi++) { if (!enable_dtr_sqrt_sampling) { ti = vi; } auto i = candidates[ti]; if (i->producer && i->ptr && i->evict_type == EvictType::NONE) { double neighbor_cost = estimate_neighbor_cost(i); size_t begin_ptr = reinterpret_cast(i->ptr->blob()->storage().get()); auto side_info = i->ptr->comp_node().get_free_left_and_right( begin_ptr, begin_ptr + i->ptr->blob()->size()); double free_mem = side_info.first + side_info.second; double msps = i->eval_func( neighbor_cost, free_mem, estimate_timestamp, 1.0, 1.0, 1.0, 1.0001); if (min_msps < 0 || msps < min_msps) { min_msps = msps; best = i; } } if (enable_dtr_sqrt_sampling) { ti += rand() % sz; if (ti > candidates.size()) break; } } return best; } void ChannelImpl::DynamicSublinear::merge( std::shared_ptr& x, std::shared_ptr& y) { auto&& f_x = find_father(x); auto&& f_y = find_father(y); if (f_x.get() == f_y.get()) { return; } f_y->t += f_x->t; f_x->parent = f_y; } std::shared_ptr ChannelImpl::DynamicSublinear::find_father( std::shared_ptr& x) { if (x->is_root()) { return x; } else { auto&& fa = find_father(x->parent); return x->parent = fa; } } void ChannelImpl::DynamicSublinear::insert_candidate(TensorInfo* ptr) { // tensor to be inserted must be brand new mgb_assert( ptr->cand_index == UINT_MAX, "got wrong candidate index : %lu", ptr->cand_index); ptr->cand_index = candidates.size(); candidates.push_back(ptr); if (!comp_node.valid()) { comp_node = ptr->ptr->comp_node(); } } void ChannelImpl::DynamicSublinear::erase_candidate(TensorInfo* ptr) { // close dtr will just clear candidates, so nothing to erase if (candidates.empty()) { ptr->cand_index = UINT_MAX; return; } // some tensors may be erased already, just skip them if (ptr->cand_index != UINT_MAX) { std::swap(candidates[ptr->cand_index], candidates.back()); candidates[ptr->cand_index]->cand_index = ptr->cand_index; candidates.pop_back(); ptr->cand_index = UINT_MAX; } } void ChannelImpl::DynamicSublinear::update_used_time(TensorInfo* ptr) { ptr->last_used_time = estimate_timestamp; }