#include #include #include "megbrain/exception.h" #include "megbrain/rdnn/algo_chooser.h" #include "megbrain/utils/invoke.h" //! TODO: here has to be know some megdnn::opr when there is produced midout.h //! fix it if there is another graceful way. #include "megdnn/opr_param_defs.h" #include "megdnn/oprs.h" #include "megdnn/oprs/base.h" #include "midout.h" MIDOUT_DECL(megbrain_opr_algo_chooser) #define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) { #define MIDOUT_E \ } \ MIDOUT_END(); using namespace megdnn; using namespace mgb; #define APPLY(statement, ...) \ mgb::apply( \ [&](const auto&... args) { return statement; }, \ std::tuple_cat(__VA_ARGS__)) // timeout delta to be added with fastest known algorithm for new algos constexpr double TIMEOUT_TOLERANCE = 2; namespace { template struct MegDNNOpr2Typename; #define cb(_Opr) \ template <> \ struct MegDNNOpr2Typename { \ static const char* name; \ }; \ const char* MegDNNOpr2Typename::name = #_Opr; DNN_FOREACH_FASTRUN_OPR(cb) #undef cb template std::string profile_name(Opr* opr) { std::string ret = std::string(::MegDNNOpr2Typename::name) + CACHE_KEY_VERSION; ret.append(opr->get_algorithm_set_name()); return ret; } template std::string format_fixlayouts( const typename rdnn::AlgoChooser::FixedTensorLayouts& layouts, size_t arity_in, size_t arity_out, const std::string& delimiter = " -> ") { std::string ret; if (arity_in) { ret.append("("); for (size_t i = 0; i < arity_in; ++i) { if (i) { ret.append(", "); } ret.append(layouts[i].to_string() + " "); } ret.append(")"); } if (arity_in && arity_out) { ret.append(delimiter); } if (arity_out) { ret.append("("); for (size_t i = 0; i < arity_out; ++i) { if (i) { ret.append(", "); } ret.append(layouts[i + arity_in].to_string() + " "); } ret.append(")"); } return ret; } /** * \brief Check if the sub opr list has circular dependence. */ class CircularDepsChecker { struct SearchItemStorage { std::string data_hold; size_t hash = 0; SearchItemStorage(const Algorithm::SearchItem& item) { Algorithm::serialize_write_pod(item.opr_type, data_hold); for (auto&& layout : item.layouts) { data_hold += layout.serialize(); } data_hold += item.param; } SearchItemStorage& init_hash() { hash = XXHash64CT::hash(data_hold.data(), data_hold.size(), 20201225); return *this; } bool operator==(const SearchItemStorage& rhs) const { return data_hold == rhs.data_hold; } struct Hash { size_t operator()(const SearchItemStorage& s) const { return s.hash; } }; }; std::unordered_set m_set; public: void put(const megdnn::Algorithm::SearchItem& key) { SearchItemStorage key_storage(key); key_storage.init_hash(); mgb_assert( m_set.find(key_storage) == m_set.end(), "Circular dependency during flatten search space"); auto ret = m_set.insert(std::move(key_storage)); mgb_assert(ret.second); } void remove(const megdnn::Algorithm::SearchItem& key) { SearchItemStorage key_storage(key); key_storage.init_hash(); auto&& iter = m_set.find(key_storage); mgb_assert(iter != m_set.end()); m_set.erase(iter); } }; ///////////////// OprTypeTrait ///////////////////////////// template struct OprFromOprTypeTrait; template struct OprTypeFromOprTrait; #define cb(_opr_type, _opr) \ template <> \ struct OprFromOprTypeTrait { \ using Opr = megdnn::_opr; \ }; \ template <> \ struct OprTypeFromOprTrait { \ constexpr static megdnn::Algorithm::OprType opr_type = \ megdnn::Algorithm::OprType::_opr_type; \ } cb(MATRIX_MUL_FORWARD, MatrixMulForward); cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward); cb(CONVOLUTION_FORWARD, ConvolutionForward); cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData); cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter); cb(CONVOLUTION3D_FORWARD, Convolution3DForward); cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData); cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter); cb(LOCAL_SHARE_FORWARD, LocalShareForward); cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData); cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter); cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward); cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData); cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter); cb(BATCH_CONV_FORWARD, BatchConvBiasForward); cb(CONVBIAS_FORWARD, ConvBiasForward); cb(POOLING_FORWARD, PoolingForward); cb(POOLING_BACKWARD, PoolingBackward); #undef cb // clang-format off #define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \ cb(MATRIX_MUL_FORWARD, stmt) \ cb(BATCHED_MATRIX_MUL_FORWARD, stmt) \ cb(CONVOLUTION_FORWARD, stmt) \ cb(CONVOLUTION_BACKWARD_DATA, stmt) \ cb(CONVOLUTION_BACKWARD_FILTER, stmt) \ cb(CONVOLUTION3D_FORWARD, stmt) \ cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \ cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \ cb(LOCAL_SHARE_FORWARD, stmt) \ cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \ cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \ cb(DEFORMABLE_CONV_FORWARD, stmt) \ cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \ cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \ cb(BATCH_CONV_FORWARD, stmt) \ cb(CONVBIAS_FORWARD, stmt) \ cb(POOLING_FORWARD, stmt) \ cb(POOLING_BACKWARD, stmt) // clang-format on #define _OPR_TYPE_CASE(_opr_type, _stmt) \ case Algorithm::OprType::_opr_type: { \ using _Opr = typename OprFromOprTypeTrait::Opr; \ _stmt; \ break; \ } #define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt) \ for (size_t _item_idx = 0; _item_idx < _search_items.size(); _item_idx++) { \ auto&& _item = _search_items[_item_idx]; \ switch (_item.opr_type) { \ FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt) \ default: \ mgb_throw(MegBrainError, "unknown opr_type"); \ } \ } template TensorLayoutArray to_layout_array( const typename rdnn::AlgoChooser::FixedTensorLayouts& layouts) { TensorLayoutArray ret; for (auto&& layout : layouts) { ret.push_back(layout); } return ret; } template typename rdnn::AlgoChooser::FixedTensorLayouts to_fixed_layouts( const TensorLayoutArray& layouts) { typename rdnn::AlgoChooser::FixedTensorLayouts ret; mgb_assert(ret.size() == layouts.size()); size_t idx = 0; for (auto&& layout : layouts) { ret[idx++] = layout; } return ret; } /** * flatten search space in postorder traversal * The subopr search construct a search tree * * A * / \ * B1B2 C * / \ * D1D2D3 E * We use postorder traverse the search tree. * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A */ template std::vector flatten_search_space( const typename rdnn::AlgoChooser::AlgoChooserHelper& helper, CircularDepsChecker& checker) { auto&& search_item = megdnn::Algorithm::SearchItem{ OprTypeFromOprTrait::opr_type, helper.param(), to_layout_array(helper.fastrun_layouts())}; checker.put(search_item); std::vector ret; for (auto algo_info : helper.get_all_candidates()) { megdnn::Algorithm* algo = helper.get_algorithm_from_desc(algo_info.desc); mgb_assert(algo, "Unknown algo description"); std::vector&& sub_items = algo->get_subopr_list( to_layout_array(helper.fastrun_layouts()), helper.megdnn_opr()); FOREACH_OPR_TYPE_DISPATCH(sub_items, { auto&& megdnn_opr = opr::intl::create_megdnn_opr<_Opr>(helper.comp_node()); megdnn_opr->param() = Algorithm::deserialize_read_pod(_item.param); typename rdnn::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), _item.param, helper.comp_node(), helper.execution_policy(), helper.allow_weight_preprocess(), helper.desc(), helper.get_input()); auto space = flatten_search_space<_Opr>(sub_helper, checker); ret.insert(ret.end(), space.begin(), space.end()); }); } ret.push_back(search_item); checker.remove(search_item); return ret; } //! serialize a algo's desc to string. format is //! handle_type|algo_type|size_of_param|size_of_name|string_of_param|string_of_name static void serialize_write_pod(const Algorithm::Info::Desc& val, std::string& result) { megdnn::Algorithm::serialize_write_pod(val.handle_type, result); megdnn::Algorithm::serialize_write_pod(val.type, result); uint32_t param_size = val.param.size(); uint32_t name_size = val.name.size(); megdnn::Algorithm::serialize_write_pod(param_size, result); megdnn::Algorithm::serialize_write_pod(name_size, result); megdnn::Algorithm::serialize_write_pod(val.param, result); megdnn::Algorithm::serialize_write_pod(val.name, result); } static Algorithm::Info::Desc deserialize_read_pod( const std::string& data, size_t offset = 0) { Algorithm::Info::Desc ret; #define cb(_val, _type) \ _val = megdnn::Algorithm::deserialize_read_pod<_type>(data.data(), offset); \ offset += sizeof(_val) cb(ret.handle_type, megdnn::Handle::HandleType); cb(ret.type, uint32_t); uint32_t param_size = 0; uint32_t name_size = 0; cb(param_size, uint32_t); cb(name_size, uint32_t); if (param_size > 0) { ret.param = std::string(data.data() + offset, param_size); offset += param_size; } if (name_size > 0) { ret.name = std::string(data.data() + offset, name_size); offset += name_size; } return ret; } } // namespace namespace megdnn { namespace param { MGB_DEF_ENUM_CLASS_BIT_OPR(ExecutionPolicy::Strategy) } // namespace param } // namespace megdnn namespace mgb { namespace rdnn { template class LayoutsModifier { using FixedTensorLayouts = typename AlgoChooser::FixedTensorLayouts; public: static void on(FixedTensorLayouts&, const typename Opr::Param&, size_t) {} private: //! index of batch in tensor, 3 for CHWN4 e.g. static size_t index_of_batch(const typename Opr::Param&) { return 0; } //! indices contain batch in inputs and outputs, src(0) dst(2) for conv e.g. static std::vector sm_indices_contain_batch; }; template std::vector LayoutsModifier::sm_indices_contain_batch = {}; #define DEFAULT_OPR_WITHOUT_INPUT_BROADCAST(opr, idxs) \ template <> \ class LayoutsModifier { \ public: \ using FixedTensorLayouts = typename AlgoChooser::FixedTensorLayouts; \ static void on( \ FixedTensorLayouts& layouts, const opr::Param& param, \ size_t new_batch_size) { \ size_t batch_index = index_of_batch(param); \ for (size_t index : sm_indices_contain_batch) { \ layouts.at(index)[batch_index] = new_batch_size; \ } \ } \ \ private: \ static size_t index_of_batch(const opr::Param&) { return 0; } \ static std::vector sm_indices_contain_batch; \ }; \ std::vector LayoutsModifier::sm_indices_contain_batch = idxs; DEFAULT_OPR_WITHOUT_INPUT_BROADCAST( megdnn::Convolution3DForward, (std::initializer_list{0, 2})) DEFAULT_OPR_WITHOUT_INPUT_BROADCAST( megdnn::Convolution3DBackwardData, (std::initializer_list{1, 2})) DEFAULT_OPR_WITHOUT_INPUT_BROADCAST( megdnn::Convolution3DBackwardFilter, (std::initializer_list{0, 1})) DEFAULT_OPR_WITHOUT_INPUT_BROADCAST( megdnn::BatchedMatrixMul, (std::initializer_list{0, 1, 2})) #undef DEFAULT_OPR_WITHOUT_INPUT_BROADCAST #define CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST(opr, idxs) \ template <> \ class LayoutsModifier { \ public: \ using FixedTensorLayouts = typename AlgoChooser::FixedTensorLayouts; \ static void on( \ FixedTensorLayouts& layouts, const opr::Param& param, \ size_t new_batch_size) { \ size_t batch_index = index_of_batch(param); \ for (size_t index : sm_indices_contain_batch) { \ layouts.at(index)[batch_index] = new_batch_size; \ } \ } \ \ private: \ static size_t index_of_batch(const opr::Param& param) { \ if (param.format == opr::Param::Format::CHWN4) { \ return 3; \ } \ return 0; \ } \ static std::vector sm_indices_contain_batch; \ }; \ std::vector LayoutsModifier::sm_indices_contain_batch = idxs; CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::ConvolutionForward, (std::initializer_list{0, 2})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::ConvolutionBackwardData, (std::initializer_list{1, 2})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::ConvolutionBackwardFilter, (std::initializer_list{0, 1})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::LocalShareForward, (std::initializer_list{0, 2})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::LocalShareBackwardData, (std::initializer_list{1, 2})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::LocalShareBackwardFilter, (std::initializer_list{0, 1})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::DeformableConvForward, (std::initializer_list{0, 2, 3, 4})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::DeformableConvBackwardData, (std::initializer_list{0, 2, 3, 4, 5, 6, 7})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::DeformableConvBackwardFilter, (std::initializer_list{0, 1, 2, 3})) CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST( megdnn::BatchConvBiasForward, (std::initializer_list{0, 1, 2, 3, 4})) #undef CONV_LIKE_OPR_WITHOUT_INPUT_BROADCAST template <> class LayoutsModifier { public: using FixedTensorLayouts = typename AlgoChooser::FixedTensorLayouts; static void on( FixedTensorLayouts& layouts, const megdnn::ConvBiasForward::Param& param, size_t new_batch_size) { size_t batch_index = index_of_batch(param); for (size_t index : sm_indices_contain_batch) { layouts.at(index)[batch_index] = new_batch_size; } for (size_t index : sm_indices_contain_batch_broadcast) { if (!check_bias_share_in_channel(layouts.at(index), param.format)) { layouts.at(index)[batch_index] = new_batch_size; } } } private: static std::vector sm_indices_contain_batch; static std::vector sm_indices_contain_batch_broadcast; static size_t index_of_batch(const megdnn::ConvBiasForward::Param& param) { if (param.format == megdnn::ConvBiasForward::Param::Format::CHWN4) { return 3; } return 0; } }; std::vector LayoutsModifier::sm_indices_contain_batch = {0, 3, 4}; std::vector LayoutsModifier::sm_indices_contain_batch_broadcast = { 2}; template <> class LayoutsModifier { public: using FixedTensorLayouts = typename AlgoChooser::FixedTensorLayouts; static void on( FixedTensorLayouts& layouts, const megdnn::MatrixMul::Param& param, size_t new_batch_size) { //! Because we do not know whether the batch size is in the dimension m //! or the dimension n, we just ignore both m and n here. // FIXME Find a way to make mgb obtain batch size information from R or // automatically layouts.at(2)[0] = new_batch_size; layouts.at(2)[1] = new_batch_size; if (param.transposeA) { layouts.at(0)[1] = new_batch_size; } else { layouts.at(0)[0] = new_batch_size; } if (param.transposeB) { layouts.at(1)[0] = new_batch_size; } else { layouts.at(1)[1] = new_batch_size; } } }; ///////////////////////////// AlgoChooserHelper ////////////////////////// template AlgoChooser::AlgoChooserHelper::AlgoChooserHelper( const FixedTensorLayouts& layouts, Opr* megdnn_opr, const std::string& param_str, const CompNode& cn, const megdnn::param::ExecutionPolicy& execution_policy, bool allow_weight_preprocess, const AlgoChooserDesc& desc, SmallVector* inputs) : m_fastrun_layouts{layouts}, m_incache_layouts{layouts}, m_dnn_opr{megdnn_opr}, m_param{param_str}, m_cn{cn}, m_execution_policy{execution_policy}, m_allow_weight_preprocess{allow_weight_preprocess}, m_desc{desc}, m_inputs{inputs} { auto fastrun_batch_size = desc.shared_batch_size; if (fastrun_batch_size) { LayoutsModifier::on(m_incache_layouts, m_dnn_opr->param(), 0); LayoutsModifier::on( m_fastrun_layouts, m_dnn_opr->param(), fastrun_batch_size); } if (m_desc.no_profiling_on_shape_change) { for (size_t i = 0; i < m_incache_layouts.size(); i++) { for (size_t j = 0; j < m_incache_layouts.at(i).ndim; j++) { m_incache_layouts.at(i)[j] = 0; m_incache_layouts.at(i).stride[j] = 0; } } } mgb_assert(m_fastrun_layouts.size() == layouts.size()); static_assert( std::tuple_size::value == 2 || std::tuple_size::value == 3 || std::tuple_size::value == 4 || std::tuple_size::value == 5 || std::tuple_size::value == 8, "Pooling assumes arity = 2 or 4,Convolution AlgoChooser assumes " "arity = 3 , 5 or 8 (for deformable conv)"); } template typename AlgoChooser::ImplExecutionPolicy AlgoChooser::AlgoChooserHelper:: choose_by_heuristic(const ExecutionStrategy& selected_strategy) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic"))) ImplExecutionPolicy policy; auto workspace_limit = m_desc.get_workspace_limit(m_cn, m_execution_policy.workspace_limit); auto attr = extract_algo_attribute(selected_strategy); policy.algo = APPLY(m_dnn_opr->get_algorithm_info_heuristic( args..., workspace_limit, attr.first, attr.second), m_fastrun_layouts) .desc; Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo); mgb_assert(algo, "Unknown algo description"); std::vector&& sub_items = algo->get_subopr_list(to_layout_array(m_fastrun_layouts), m_dnn_opr); FOREACH_OPR_TYPE_DISPATCH(sub_items, { auto&& megdnn_opr = opr::intl::create_megdnn_opr<_Opr>(m_cn); megdnn_opr->param() = Algorithm::deserialize_read_pod(_item.param); typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), _item.param, m_cn, m_execution_policy, m_allow_weight_preprocess, m_desc); policy.sub_policy.push_back(sub_helper.choose_by_heuristic(selected_strategy)); }); return policy; MIDOUT_E } template typename AlgoChooser::ImplExecutionPolicy AlgoChooser::AlgoChooserHelper:: choose_by_profile( const ExecutionStrategy& selected_strategy, bool enable_update) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile"))) // no_profiling_on_shape_change is usually false, no interface to change it easily if (m_desc.no_profiling_on_shape_change) { auto policy = m_dnn_opr->execution_policy(); if (policy.algo.valid()) { return policy; } if (is_matmul()) { mgb_log_warn( "choose algo by heuristic, which may cause performance " "regression."); return choose_by_heuristic(selected_strategy); } } typename AlgoChooser::ImplExecutionPolicy tmp_policy; bool retrive_from_cache = true; bool allow_log = false; construct_execution_policy( selected_strategy, tmp_policy, retrive_from_cache, allow_log); if (tmp_policy.algo.valid()) { // return policy when contruct successed return tmp_policy; } // if update enabled, do profiling and update cache // enable_update = false only when using HEURISRIC_PROFILE strategy if (enable_update) { CircularDepsChecker circular_deps_checker; auto&& search_items = flatten_search_space(*this, circular_deps_checker); FOREACH_OPR_TYPE_DISPATCH(search_items, { auto&& megdnn_opr = opr::intl::create_megdnn_opr<_Opr>(m_cn); // skip different sub opr, for example: // skip matmul algo when profiling convolution if ((m_cn.device_type() == mgb::CompNode::DeviceType::CUDA || m_cn.device_type() == mgb::CompNode::DeviceType::ROCM) && m_dnn_opr->get_opr_type() != megdnn_opr->get_opr_type()) continue; megdnn_opr->param() = Algorithm::deserialize_read_pod(_item.param); typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), _item.param, m_cn, m_execution_policy, m_allow_weight_preprocess, m_desc, m_inputs); sub_helper.profile(selected_strategy); }); } // try to retrive algorithm from fastrun cache, this time it's guaranteed to get // result, retrive_from_cache = true, allow_log = true typename AlgoChooser::ImplExecutionPolicy policy; construct_execution_policy(selected_strategy, policy); if (policy.algo.valid()) return policy; return choose_by_heuristic(selected_strategy); MIDOUT_E } template std::pair< typename AlgoChooser::ImplAlgoDesc, Maybe> AlgoChooser::AlgoChooserHelper::get_profile_result_from_cache( const ExecutionStrategy& selected_strategy) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache"))) AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str()); typename Opr::Param origin_param = m_dnn_opr->param(); AlgoChooserProfileCache::Key cache_key{ m_incache_layouts.data(), m_incache_layouts.size(), &origin_param, sizeof(origin_param)}; auto&& rst = cache.get(cache_key); // failed to find a cache entry, return if (!rst.valid()) return {{}, rst}; // found a cache entry(it's a vector of Result), but it's empty auto&& prof = rst.val(); if (prof.empty()) return {{}, rst}; // found non-empty cache result, filter it by workspace limit and attribute size_t workspace_limit = m_desc.get_workspace_limit(m_cn, m_execution_policy.workspace_limit); auto target_attr = extract_algo_attribute(selected_strategy); bool skip_by_negative = false; bool skip_by_workspace = false; for (auto&& i : prof) { auto attr_of_algo = static_cast(i.attribute); bool contain_attr_all_positive = (target_attr.first == (attr_of_algo & target_attr.first)); bool contain_attr_any_negative = static_cast(attr_of_algo & target_attr.second); if (contain_attr_all_positive) { if (!contain_attr_any_negative) { if (i.workspace <= workspace_limit) { // found a well-suited algothrim with good workspace limit and // correct attribute Algorithm::Info::Desc algo_desc = deserialize_read_pod(i.algo); return {algo_desc, rst}; } skip_by_workspace = true; } else { skip_by_negative = true; } } } // failed to find an algorithm that satisfies the actual workspace limit if (skip_by_workspace) return {}; // failed to find an algorithm that satisfies the actual attribute std::string layouts_str = AlgoChooser::format_fixlayouts(m_fastrun_layouts); if (skip_by_negative) { mgb_log_error( "opr: %s, layouts: %s, No usable algo. There are available " "algos match " "positive strategy(%s), but filtered by negative stategy(%s).", ::MegDNNOpr2Typename::name, layouts_str.c_str(), Algorithm::attribute_str(target_attr.first).c_str(), Algorithm::attribute_str(target_attr.second).c_str()); } else { mgb_log_error( "opr: %s, layouts: %s, No usable algo. algos read from cache " "could not " "satisfy positive strategy(%s)", ::MegDNNOpr2Typename::name, layouts_str.c_str(), Algorithm::attribute_str(target_attr.first).c_str()); } mgb_trap(); MIDOUT_E } template void AlgoChooser::AlgoChooserHelper::construct_execution_policy( const ExecutionStrategy& selected_strategy, typename AlgoChooser::ImplExecutionPolicy& policy, bool retrive_from_cache, bool allow_log) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy"))) // policy.algo is always invalid when called from choose_by_profile // policy.algo will be valid when called from profile if (!policy.algo.valid()) { if (retrive_from_cache) { policy.algo = get_profile_result_from_cache(selected_strategy).first; // nothing is found even with profiling if (!policy.algo.valid()) { if (allow_log) { auto target_attr = extract_algo_attribute(selected_strategy); std::string layouts_str = AlgoChooser::format_fixlayouts(m_fastrun_layouts); std::string msg = ssprintf( "(opr : %s, layouts %s, with attribute(%s) and " "without attribute(%s)", ::MegDNNOpr2Typename::name, layouts_str.c_str(), Algorithm::attribute_str(target_attr.first).c_str(), Algorithm::attribute_str(target_attr.second).c_str()); mgb_log_debug( "No algo get from cache for %s. This may caused by " "mismatch with model and cache file or imcomplete " "cache file. ex. profiling with version1, but " "inferencing on version2 or profiling modelA but " "inferencing modelB", msg.c_str()); } return; } } else { // retrive_from_cache = false happens when using algo choose hook in // megbrain graph return heuristic algorithm in this case auto workspace_limit = m_desc.get_workspace_limit( m_cn, m_execution_policy.workspace_limit); auto attr = extract_algo_attribute(selected_strategy); policy.algo = APPLY(m_dnn_opr->get_algorithm_info_heuristic( args..., workspace_limit, attr.first, attr.second), m_fastrun_layouts) .desc; mgb_assert( policy.algo.valid(), "No algo found from heuristic with strategy %u and " "workspace limit %zu", static_cast(selected_strategy), workspace_limit); } } // construct current algorithm Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo); mgb_assert(algo, "Unknown algo description"); std::vector&& sub_items = algo->get_subopr_list(to_layout_array(m_fastrun_layouts), m_dnn_opr); // construct sub oprs' algorithm FOREACH_OPR_TYPE_DISPATCH(sub_items, { auto&& megdnn_opr = opr::intl::create_megdnn_opr<_Opr>(m_cn); megdnn_opr->param() = Algorithm::deserialize_read_pod(_item.param); typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper( to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(), _item.param, m_cn, m_execution_policy, m_allow_weight_preprocess, m_desc); policy.sub_policy.push_back({}); sub_helper.construct_execution_policy( selected_strategy, policy.sub_policy.back(), retrive_from_cache, allow_log); if (!policy.sub_policy.back().algo.valid()) { // means sub_helper.construct_execution_policy fails. clean up // policy.algo and return policy = {}; return; } }); MIDOUT_E } template size_t AlgoChooser::AlgoChooserHelper::get_workspace_size_bytes( const ImplExecutionPolicy& policy, const FixedTensorLayouts& layouts) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes"))) m_dnn_opr->execution_policy() = policy; size_t result; const FixedTensorLayouts* layouts_ptr = &m_fastrun_layouts; if (layouts.at(0).ndim) { layouts_ptr = &layouts; } if_constexpr()>( [&](auto _) { auto&& opr = _(m_dnn_opr); auto prep = this->construct_fake_preprocess_filter(*layouts_ptr); PreprocessFilter* prep_ptr = prep.valid() ? &prep.val() : nullptr; result = std::max( APPLY(opr->get_preprocess_workspace_in_bytes(args...), *layouts_ptr), APPLY(opr->get_workspace_in_bytes(args..., prep_ptr), *layouts_ptr)); }, /* else */ [&](auto _) { result = APPLY( _(m_dnn_opr)->get_workspace_in_bytes(args...), *layouts_ptr); }); return result; MIDOUT_E } template std::vector::ImplAlgo> AlgoChooser< Opr>::AlgoChooserHelper::get_all_candidates() const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates"))) auto heu = choose_by_heuristic(m_execution_policy.strategy); auto&& ret = APPLY(m_dnn_opr->get_all_algorithms_info(args...), m_fastrun_layouts); bool found = false; // make heuristic algorithm always the first in all candidate alrogrithms // so profiling step will always run heuristic algorithm first for (size_t i = 0; i < ret.size(); ++i) { if (ret[i].desc == heu.algo) { found = true; std::swap(ret[i], ret[0]); break; } } // make sure heuristic algorithm is valid Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(heu.algo); mgb_assert(palgo, "Unknown algo description"); mgb_assert( found, "algo %s got by heuristic not found in " "candidate list", palgo->name()); return std::move(ret); MIDOUT_E } template Maybe AlgoChooser::AlgoChooserHelper:: profile_single_algo(const ImplExecutionPolicy& policy, double& timeout) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo"))) // fill TimedProfiler::param and run actual timed profiler typename TimedProfiler::Param param; // force check copy size <= dest len-1 from gcc8 for safe param.execution_policy = TimedProfiler::Param::ExecutionPolicyBlob::serialize(policy); param.workspace = get_workspace_size_bytes(policy); for (int i = 0; i < arity; ++i) { auto&& src = m_fastrun_layouts[i]; bool cond_normal = src.format.is_default() && (src.dtype.category() == DTypeCategory::FLOAT || src.dtype.category() == DTypeCategory::INT || src.dtype.category() == DTypeCategory::QUANTIZED); bool cond_low_bit = src.dtype.is_low_bit() && src.format.is_lowbit_aligned() && (src.dtype.category() == DTypeCategory::QUANTIZED || src.dtype.category() == DTypeCategory::LOWBIT); MGB_MARK_USED_VAR(cond_normal); MGB_MARK_USED_VAR(cond_low_bit); mgb_assert( cond_normal || cond_low_bit, "unsupported layout in profiling: %s", src.to_string().c_str()); param.dtypes[i] = src.dtype.enumv(); } param.comp_node_physical = m_cn.locator(); param.comp_node_logical = m_cn.locator_logical(); mgb_assert(param.shapes.size() == m_fastrun_layouts.size()); for (size_t i = 0; i < param.shapes.size(); ++i) param.shapes[i] = m_fastrun_layouts[i]; param.opr_param = m_dnn_opr->param(); param.allow_weight_preprocess = m_allow_weight_preprocess; param.inp_tensornds = m_inputs; Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo); mgb_assert(palgo, "can not find algo when profile single algo"); auto rst = TimedProfiler::profile(param, timeout); // MIOpen conv profiles all available algos when a specfic shape is // provided for the first time, which probably adds to the result time. // Therefore, a second profile execution is needed. if (strncmp(palgo->name(), "MIOpen", 6) == 0) { rst = TimedProfiler::profile(param, timeout); } if (!rst.valid()) return None; // subprocess will return dbl_max when meomry limit is not satisfied if (rst.val().time == std::numeric_limits::max()) return None; std::string algo_desc; serialize_write_pod(policy.algo, algo_desc); return AlgoChooserProfileCache::ResultEntry{ algo_desc, static_cast(palgo->attribute()), rst.val().time, param.workspace}; MIDOUT_E } template void AlgoChooser::AlgoChooserHelper::profile( const ExecutionStrategy& selected_strategy) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile"))) // some sub oprs have beed profiled before // sub oprs won't be checked at the beginning of choose_by_profile auto&& rst = get_profile_result_from_cache(selected_strategy); // rst.first.valid means there exists valid algorithms for current opr, just return // otherwise need to profile // in order to avoid reprofile in fastrun if (rst.first.valid()) return; AlgoChooserProfileCache::Result prof_rst; auto target_attr = extract_algo_attribute(selected_strategy); std::string layouts_str = AlgoChooser::format_fixlayouts(m_fastrun_layouts); double cur_timeout = 0; size_t data_size = 0; for (auto ly : m_fastrun_layouts) data_size += ly.span().dist_byte(); auto workspace_limit = m_desc.get_workspace_limit(m_cn, m_execution_policy.workspace_limit); RealTimer timer; std::unordered_set rst_algos; if (rst.second.valid()) { std::transform( rst.second.val().begin(), rst.second.val().end(), std::inserter(rst_algos, rst_algos.end()), [](const AlgoChooserProfileCache::ResultEntry& result) { return result.algo; }); } for (auto algo : get_all_candidates()) { std::string desc; serialize_write_pod(algo.desc, desc); if (rst_algos.find(desc) != rst_algos.end()) { continue; } Maybe cur_rst; ImplExecutionPolicy policy; policy.algo = algo.desc; // skip naive algo, can not using attribute to determine naive algo, thus using // strcmp if (algo.desc.name.compare("NAIVE") == 0) { continue; } //! check negative attribute : skip negative attribute auto palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo); if (palgo->contain_attribute_any(target_attr.second)) { mgb_log_debug( "skip algo %s, which matches the profile strategy required " "'not contain attribute(%s).'", algo.desc.name.c_str(), Algorithm::attribute_str(target_attr.second).c_str()); continue; } //! check workspace limit construct_execution_policy(selected_strategy, policy); // this will failed // when construct matmul algorithm for convolution opr if (!policy.algo.valid()) continue; size_t workspace_needed = get_workspace_size_bytes(policy); if (m_inputs != nullptr) workspace_needed += data_size; if (workspace_needed > m_desc.get_workspace_limit(m_cn, m_execution_policy.workspace_limit)) { continue; } std::string msg = ssprintf( "profiling %s algorithm %s %s", ::MegDNNOpr2Typename::name, algo.desc.name.c_str(), layouts_str.c_str()); timer.reset(); MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); } // megbrain catched exception MGB_CATCH(std::exception & exc, { mgb_log_debug("caught exception during %s: %s", msg.c_str(), exc.what()); continue; }) // megbrain uncatched exception MGB_CATCH(..., { mgb_log_debug("caught exception during %s", msg.c_str()); continue; }) if (!cur_rst.valid()) { mgb_log_debug( "timeout when %s; timeout setting: %.3fsec", msg.c_str(), cur_timeout); continue; } if (!cur_timeout) { cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; } else { cur_timeout = std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); } auto&& rst = cur_rst.val(); mgb_log_debug( "%s: workspace: %zu; time: %.3gsec", msg.c_str(), rst.workspace, rst.time); prof_rst.push_back(rst); } std::string msg = ssprintf( "no usable %s algorithm %s without attribute(%s) or could not meet " "workspace limite requirement(%zu)", ::MegDNNOpr2Typename::name, layouts_str.c_str(), Algorithm::attribute_str(target_attr.second).c_str(), workspace_limit); // allowed to have empty profile result for current opr // append some previous profiled results if (rst.second.valid()) prof_rst.insert( prof_rst.end(), rst.second.val().begin(), rst.second.val().end()); if (!prof_rst.empty()) { FixedTensorLayouts incache_layouts = m_incache_layouts; typename Opr::Param origin_param = m_dnn_opr->param(); AlgoChooserProfileCache::Key cache_key{ incache_layouts.data(), incache_layouts.size(), &origin_param, sizeof(origin_param)}; AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str()); cache.put(cache_key, prof_rst); } MIDOUT_E } template Maybe> AlgoChooser::AlgoChooserHelper:: construct_fake_preprocess_filter(const FixedTensorLayouts& layouts) const { MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter"))) Maybe> result = None; const FixedTensorLayouts* layouts_ptr = &m_fastrun_layouts; if (layouts.at(0).ndim) { layouts_ptr = &layouts; } if_constexpr()>([&](auto _) { if (!m_allow_weight_preprocess) return; auto opr = _(m_dnn_opr); auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...), *layouts_ptr); //! No preprocess layout means no need weight preprocess if (layouts.empty()) { return; } //! all layouts arm empty means no need weight preprocess bool layout_valid = false; for (auto&& layout : layouts) { if (!layout.is_empty()) { layout_valid = true; } } if (!layout_valid) { return; } result = PreprocessFilter{}; auto& res = result.val(); res.algorithm_id = nullptr; res.tensors.resize(layouts.size()); for (size_t i = 0; i < layouts.size(); i++) { res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]); } }); return result; MIDOUT_E } template std::pair AlgoChooser::AlgoChooserHelper:: extract_algo_attribute(const ExecutionStrategy& strategy) const { std::pair ret = std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT); //! from strategy if (strategy & ExecutionStrategy::REPRODUCIBLE) { ret.first |= AlgoAttribute::REPRODUCIBLE; } if (strategy & ExecutionStrategy::OPTMIZED) { ret.second |= AlgoAttribute::NAIVE; } //! from graph option // FIXME: no_profiling_on_shape_change extract USABLE_DEPEND_ON_SHAPE // attribute when fixed usable if (m_desc.shared_batch_size) { ret.second |= AlgoAttribute::USABLE_DEPEND_ON_SHAPE; } if (m_desc.binary_equal_between_batch) { ret.first |= AlgoAttribute::REPRODUCIBLE; ret.second |= AlgoAttribute::ACCURACY_DEPEND_ON_BATCH; } return ret; } #define INST(Opr) \ template AlgoChooser::AlgoChooserHelper::AlgoChooserHelper( \ const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ const std::string& param_str, const CompNode& cn, \ const megdnn::param::ExecutionPolicy& execution_policy, \ bool allow_weight_preprocess, const AlgoChooserDesc& desc, \ SmallVector* inputs); \ template typename AlgoChooser::ImplExecutionPolicy \ AlgoChooser::AlgoChooserHelper::choose_by_heuristic( \ const ExecutionStrategy& select_strategy) const; \ template typename AlgoChooser::ImplExecutionPolicy \ AlgoChooser::AlgoChooserHelper::choose_by_profile( \ const ExecutionStrategy& select_strategy, bool enable_update) const; \ template typename std::pair< \ AlgoChooser::ImplAlgoDesc, \ Maybe> \ AlgoChooser::AlgoChooserHelper::get_profile_result_from_cache( \ const ExecutionStrategy& select_strategy) const; \ template void \ AlgoChooser::AlgoChooserHelper::construct_execution_policy( \ const ExecutionStrategy& select_strategy, \ typename AlgoChooser::ImplExecutionPolicy& policy, \ bool retrive_from_cache, bool allow_log) const; \ template size_t \ AlgoChooser::AlgoChooserHelper::get_workspace_size_bytes( \ const typename AlgoChooser::ImplExecutionPolicy& policy, \ const FixedTensorLayouts& layouts) const; \ template std::vector::ImplAlgo> \ AlgoChooser::AlgoChooserHelper::get_all_candidates() const; \ template Maybe \ AlgoChooser::AlgoChooserHelper::profile_single_algo( \ const typename AlgoChooser::ImplExecutionPolicy& policy, \ double& timeout) const; \ template std::pair \ AlgoChooser::AlgoChooserHelper::extract_algo_attribute( \ const ExecutionStrategy& strategy) const; \ template void AlgoChooser::AlgoChooserHelper::profile( \ const ExecutionStrategy& selected_strategy) const; DNN_FOREACH_FASTRUN_OPR(INST) #undef INST //////////////////////////////// AlgoChoose ///////////////////////////// template typename AlgoChooser::ImplExecutionPolicy AlgoChooser::get_policy( const AlgoChooserHelper& helper) { auto opr_strategy = helper.execution_policy().strategy; auto strategy2str = [](auto strategy) { std::string ret; if (strategy & ExecutionStrategy::HEURISTIC) { ret += "HEURISTIC "; } if (strategy & ExecutionStrategy::PROFILE) { ret += "PROFILE "; } if (strategy & ExecutionStrategy::REPRODUCIBLE) { ret += "REPRODUCIBLE "; } if (strategy & ExecutionStrategy::OPTIMIZED) { ret += "OPTIMIZED "; } return ret; }; mgb_log_debug("Use Stragegy :%s", strategy2str(opr_strategy).c_str()); if (opr_strategy & ExecutionStrategy::HEURISTIC) { if (opr_strategy & ExecutionStrategy::PROFILE) { //! this strategy will choose from cache first, then choost by //! heuristic if fail. ImplExecutionPolicy policy = helper.choose_by_profile(opr_strategy, false); if (!policy.algo.valid()) { policy = helper.choose_by_heuristic(opr_strategy); } return policy; } else { return helper.choose_by_heuristic(opr_strategy); } } #if MGB_ENABLE_FASTRUN else if (opr_strategy & ExecutionStrategy::PROFILE) { return helper.choose_by_profile(opr_strategy, true); } #endif else { mgb_throw(InternalError, "bad ExecutionPolicy strategy"); } } template std::string AlgoChooser::format_fixlayouts(const FixedTensorLayouts& layout) { return ::format_fixlayouts(layout, arity_in, arity_out); } #define INST(Opr) \ template AlgoChooser::ImplExecutionPolicy \ AlgoChooser::get_policy(const AlgoChooserHelper& proxy); \ template std::string AlgoChooser::format_fixlayouts( \ const FixedTensorLayouts& layout); DNN_FOREACH_FASTRUN_OPR(INST) #undef INST } // namespace rdnn } // namespace mgb // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}