/** * \file imperative/python/src/grad_override.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./grad.h" #include "megbrain/imperative/ops/autogen.h" namespace mgb::imperative::python { namespace { std::shared_ptr get_shape(Tensor* x) { static auto op = GetVarShape::make(); return python::apply(op, x)[0]; } std::shared_ptr reduce_to(Tensor* x, Tensor* s) { static auto op = Reduce::make(); return python::apply(op, x, s)[0]; } std::shared_ptr reshape_to(Tensor* x, Tensor* s) { static auto op = Reshape::make(); return python::apply(op, x, s)[0]; } std::shared_ptr broadcast_to(Tensor* x, Tensor* s) { static auto op = Broadcast::make(); return python::apply(op, x, s)[0]; } std::shared_ptr make_tensor(CompNode cn, Tensor* shape, float v = 0) { HostTensorND scalar{cn, {{1}, dtype::Float32()}}; scalar.ptr()[0] = v; interpreter::Interpreter::Handle handle = interpreter_for_py->put(scalar, false); auto&& t = std::make_shared(handle); auto res = broadcast_to(t.get(), shape); return res; } apply_result_t elemwise_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto& op = ctx.op->cast_final_safe(); if (op.mode == Elemwise::Mode::ADD) { mgb_assert(ctx.nargs == 2); std::array, 2> input_shapes; for (size_t i = 0; i < 2; ++i) { if (input_requires_grad(ctx, i)) { input_shapes[i] = get_shape(ctx.args[i]); } } maker.output_size(1).output_captured(0, false); maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(2); if (!grad) { return ret; } for (size_t i = 0; i < 2; ++i) { if (shapes[i]) { ret[i] = reduce_to(grad, shapes[i].get()); } } return ret; }); return apply(ctx); } throw GradRuleFallback(); } apply_result_t reshape_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { mgb_assert(ctx.nargs == 2); std::array, 2> input_shapes; for (size_t i = 0; i < 2; ++i) { if (input_requires_grad(ctx, i)) { input_shapes[i] = get_shape(ctx.args[i]); } } maker.output_size(1).output_captured(0, false); maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(2); if (!grad) { return ret; } for (size_t i = 0; i < 2; ++i) { if (shapes[i]) { ret[i] = reshape_to(grad, shapes[i].get()); } } return ret; }); return apply(ctx); } apply_result_t subtensor_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto&& op = ctx.op->cast_final_safe(); auto&& grad_op = SetSubtensor::make(op.items); SmallVector> inputs; if (input_requires_grad(ctx, 0)) { inputs.push_back(get_shape(ctx.args[0])); for (size_t i = 1; i < ctx.nargs; ++i) { inputs.push_back(ctx.args[i]->copy()); } } maker.output_size(1).output_captured(0, false); maker.backward([inputs=std::move(inputs), grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad && inputs[0]) { SmallVector args_(inputs.size()+1); auto&& zeros = make_tensor(grad->comp_node(), inputs[0].get()); args_[0] = zeros.get(); args_[1] = grad; for (size_t i = 1; i < inputs.size(); ++i) { args_[i+1] = inputs[i].get(); } ret[0] = python::apply(grad_op_, args_)[0]; } return ret; }); return apply(ctx); } apply_result_t indexingMultiAxisVec_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto&& op = ctx.op->cast_final_safe(); auto&& grad_op = IndexingSetMultiAxisVec::make(op.items); SmallVector> inputs; if (input_requires_grad(ctx, 0)) { inputs.push_back(get_shape(ctx.args[0])); for (size_t i = 1; i < ctx.nargs; ++i) { inputs.push_back(ctx.args[i]->copy()); } } maker.output_size(1).output_captured(0, false); maker.backward([inputs=std::move(inputs), grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad && inputs[0]) { SmallVector args_(inputs.size()+1); auto&& zeros = make_tensor(grad->comp_node(), inputs[0].get()); args_[0] = zeros.get(); args_[1] = grad; for (size_t i = 1; i < inputs.size(); ++i) { args_[i+1] = inputs[i].get(); } ret[0] = python::apply(grad_op_, args_)[0]; } return ret; }); return apply(ctx); } apply_result_t reduce_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto& op = ctx.op->cast_final_safe(); if (op.mode == Reduce::Mode::SUM) { mgb_assert(ctx.nargs == 1); std::array, 1> input_shapes; if (input_requires_grad(ctx, 0)) { input_shapes[0] = get_shape(ctx.args[0]); } maker.output_size(1).output_captured(0, false); maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad && shapes[0]) { ret[0] = broadcast_to(grad, shapes[0].get()); } return ret; }); return apply(ctx); } throw GradRuleFallback(); } apply_result_t addAxis_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto&& op = ctx.op->cast_final_safe(); mgb_assert(ctx.nargs == 1); bool flag = input_requires_grad(ctx, 0); auto&& grad_op = RemoveAxis::make(op.axis); std::sort(grad_op->axis.begin(), grad_op->axis.end(), std::greater()); maker.output_size(1).output_captured(0, false); maker.backward([grad_op_=std::move(grad_op), flag_=flag](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad && flag_) { ret[0] = python::apply(grad_op_, grad)[0]; } return ret; }); return apply(ctx); } apply_result_t removeAxis_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { auto&& op = ctx.op->cast_final_safe(); mgb_assert(ctx.nargs == 1); bool flag = input_requires_grad(ctx, 0); auto&& grad_op = AddAxis::make(op.axis); std::sort(grad_op->axis.begin(), grad_op->axis.end()); maker.output_size(1).output_captured(0, false); maker.backward([grad_op_=std::move(grad_op), flag_=flag](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad && flag_) { ret[0] = python::apply(grad_op_, grad)[0]; } return ret; }); return apply(ctx); } apply_result_t fastpathcopy_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) { mgb_assert(ctx.nargs == 1); maker.output_size(1).output_captured(0, false); maker.backward([](BackwardContext&, Tensor*const* grads, size_t ngrads) { mgb_assert(ngrads == 1); Tensor* grad = grads[0]; apply_result_t ret(1); if (grad) { ret[0] = grad->shared_from_this(); } return ret; }); return apply(ctx); } struct Init { Init() { auto& reg = grad_rule_registry(); reg.emplace(Elemwise::typeinfo(), elemwise_grad_rule); reg.emplace(Reshape::typeinfo(), reshape_grad_rule); reg.emplace(Subtensor::typeinfo(), subtensor_grad_rule); reg.emplace(IndexingMultiAxisVec::typeinfo(), indexingMultiAxisVec_grad_rule); reg.emplace(Reduce::typeinfo(), reduce_grad_rule); reg.emplace(AddAxis::typeinfo(), addAxis_grad_rule); reg.emplace(RemoveAxis::typeinfo(), removeAxis_grad_rule); reg.emplace(FastpathCopy::typeinfo(), fastpathcopy_grad_rule); } } _; } // namespace } // namespace mgb::imperative::python