/** * \file dnn/src/fallback/conv_bias/im2col/strategy_nopack.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/fallback/conv_bias/im2col/strategy_base.h" #include "src/fallback/convolution/img2col_helper.h" #if MEGDNN_X86 #include "src/x86/conv_bias/postprocess_helper.h" #elif (MEGDNN_ARMV7 || MEGDNN_AARCH64) #include "src/arm_common/conv_bias/postprocess_helper.h" #endif using namespace megdnn; #if MEGDNN_X86 using namespace x86; #endif namespace megdnn { template void Strategy:: copy_padding_kern(WorkspaceBundle bundle, const fallback::ConvBiasImpl::NCBKernParam& param, const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, size_t) { UNPACK_CONV_F32_NCB_KERN_SIZES(param); MEGDNN_MARK_USED_VAR(N); MEGDNN_MARK_USED_VAR(OC); MEGDNN_MARK_USED_VAR(OH); MEGDNN_MARK_USED_VAR(OW); MEGDNN_MARK_USED_VAR(FH); MEGDNN_MARK_USED_VAR(FW); MEGDNN_MARK_USED_VAR(SH); MEGDNN_MARK_USED_VAR(SW); size_t IW2 = IW + 2 * PW; size_t IH2 = IH + 2 * PH; size_t batch_id = ncb_index.ndrange_id[0]; size_t group_id = ncb_index.ndrange_id[1]; size_t channel_id = ncb_index.ndrange_id[2]; size_t padding_group_size = IH2 * IW2 * IC; size_t workspace_channel_offset = IH2 * IW2 * channel_id; size_t workspace_group_offset = group_id * padding_group_size; size_t workspace_batch_offset = param.filter_meta.group * batch_id * padding_group_size; bundle.set(param.workspace_ptr); src_ctype src_zp = static_cast(0); if (param.src_type.enumv() == DTypeEnum::Quantized8Asymm) { src_zp = param.src_type.param().zero_point; } src_ctype* src = const_cast( param.src(batch_id, group_id, channel_id)); src_ctype* src2; src2 = static_cast(bundle.get(BUNDLE_PADDING_INDEX)) + workspace_group_offset + workspace_batch_offset + workspace_channel_offset; src_ctype* src2_ptr = src2; const src_ctype* src_ptr = src; if (PH != 0) { std::memset(src2_ptr, src_zp, sizeof(src_ctype) * PH * IW2); src2_ptr += PH * IW2; } rep(ih, IH) { if (PW != 0) rep(pw, PW) * (src2_ptr++) = src_zp; std::memcpy(src2_ptr, src_ptr, sizeof(src_ctype) * IW); src2_ptr += IW; src_ptr += IW; if (PW != 0) rep(pw, PW) * (src2_ptr++) = src_zp; } if (PH != 0) { std::memset(src2_ptr, src_zp, sizeof(src_ctype) * PH * IW2); src2_ptr += PH * IW2; } } template void Strategy:: packA_kern(WorkspaceBundle bundle, const fallback::ConvBiasImpl::NCBKernParam& param, fallback::MatrixMulImpl::KernSizeParam matmulparam, fallback::MatrixMulImpl::AlgoBase* matmul_algo, const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, size_t) { MEGDNN_MARK_USED_VAR(bundle); MEGDNN_MARK_USED_VAR(param); MEGDNN_MARK_USED_VAR(matmulparam); MEGDNN_MARK_USED_VAR(matmul_algo); MEGDNN_MARK_USED_VAR(ncb_index); megdnn_throw( "nopack mode should not call packA_kern please check your code"); } template void* Strategy:: get_matmul_dst_ptr(const fallback::ConvBiasImpl::NCBKernParam& param, const WorkspaceBundle& bundle_thread, const StrategyParam& sparam) { if (sparam.is_dst_8bit || !sparam.is_ohw_size_bigger) { return static_cast( bundle_thread.get(THREAD_BUNDLE_MATMULDST_INDEX)); } else { bias_ctype* dst = param.dst(sparam.batch_id, sparam.group_id) + sparam.oc_cur_index * sparam.ohw; return static_cast(dst); } } template void Strategy:: exec_matmul(const fallback::ConvBiasImpl::NCBKernParam& param, const StrategyParam& sparam, WorkspaceBundle bundle, WorkspaceBundle bundle_thread, fallback::MatrixMulImpl::KernParam matmul_param, fallback::MatrixMulImpl::AlgoBase* matmul_algo, const fallback::ConvBiasImpl::NCBKernIndex& ncb_index) { MEGDNN_MARK_USED_VAR(bundle); MEGDNN_MARK_USED_VAR(ncb_index); matmul_param.workspace_ptr = bundle_thread.get(THREAD_BUNDLE_MATCOMP_INDEX); void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam); src_ctype* im2col_dst = static_cast( bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); const void* filter = param.filter(sparam.group_id) + sparam.oc_cur_index * param.filter_meta.icpg * param.filter_meta.spatial[0] * param.filter_meta.spatial[1]; matmul_param.M = sparam.output_block_oc_size; matmul_param.N = sparam.output_block_size; matmul_param.LDB = sparam.output_block_size; matmul_param.LDC = sparam.output_block_size; matmul_param.A_ptr = filter; matmul_param.B_ptr = im2col_dst; matmul_param.C_ptr = matmul_dst; auto matmul_kern = matmul_algo->get_kern(matmul_param); matmul_kern(matmul_param); } template void Strategy:: exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, const StrategyParam& sparam, const fallback::ConvBiasImpl::NCBKernParam& param, fallback::MatrixMulImpl::KernParam matmul_param, fallback::MatrixMulImpl::AlgoBase* matmul_algo) { MEGDNN_MARK_USED_VAR(matmul_param); MEGDNN_MARK_USED_VAR(matmul_algo); size_t sh = param.filter_meta.stride[0]; size_t sw = param.filter_meta.stride[1]; size_t oc = param.filter_meta.ocpg; size_t oh = param.osz[0]; size_t ow = param.osz[1]; size_t ic = param.filter_meta.icpg; size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; size_t fh = param.filter_meta.spatial[0]; size_t fw = param.filter_meta.spatial[1]; size_t is_xcorr = !param.filter_meta.should_flip; size_t input_offset = ih * iw * ic * (sparam.group_id + param.filter_meta.group * sparam.batch_id) * sizeof(src_ctype); src_ctype* src2 = reinterpret_cast( reinterpret_cast(bundle.get(BUNDLE_PADDING_INDEX)) + input_offset); bool is_phpwzero = param.filter_meta.padding[0] == 0 && param.filter_meta.padding[1] == 0; if (is_phpwzero) { src2 = const_cast( param.src(sparam.batch_id, sparam.group_id)); } src_ctype* im2col_dst = static_cast( bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); if (sh == 1 && sw == 1) { if (is_xcorr) { img2col(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sparam.ohw_cur_index, sparam.output_block_size); } else { img2col(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sparam.ohw_cur_index, sparam.output_block_size); } } else { if (is_xcorr) { img2col_stride(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sh, sw, sparam.ohw_cur_index, sparam.output_block_size); } else { img2col_stride(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sh, sw, sparam.ohw_cur_index, sparam.output_block_size); } } } template void Strategy:: exec_postprocess(const fallback::ConvBiasImpl::NCBKernParam& param, const StrategyParam& sparam, WorkspaceBundle bundle_thread) { copy_bias(param, bundle_thread, sparam); void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam); const bias_ctype* bias_ptr = static_cast( param.bias(sparam.batch_id, sparam.group_id)); bias_ctype* bias_temp_ptr = static_cast(get_bias_temp_ptr(param, bundle_thread)); PostProcess::run( matmul_dst, const_cast( param.bias_mode == megdnn::BiasMode::BIAS ? bias_temp_ptr : static_cast(const_cast( bias_ptr + sparam.oc_cur_index))), matmul_dst, param.bias_mode, param.nonlineMode, param.bias_type, param.dst_type, 1_z, sparam.output_block_oc_size, 1_z, sparam.output_block_size); copy_dst(param, matmul_dst, sparam); } template void Strategy:: copy_dst(const fallback::ConvBiasImpl::NCBKernParam& param, const void* matmul_dst, const StrategyParam& sparam) { if (!sparam.skip_copy_dst) { dst_ctype* dst_tmp_ptr = reinterpret_cast(const_cast(matmul_dst)); dst_ctype* dst = param.dst(sparam.batch_id, sparam.group_id) + sparam.oc_cur_index * sparam.ohw + sparam.ohw_cur_index; for (size_t oc = 0; oc < sparam.output_block_oc_size; oc++) { std::memcpy(dst, dst_tmp_ptr, sizeof(dst_ctype) * sparam.output_block_size); dst_tmp_ptr += sparam.output_block_size; dst += sparam.ohw; } } } template void Strategy:: copy_bias(const fallback::ConvBiasImpl::NCBKernParam& param, WorkspaceBundle bundle_thread, const StrategyParam& sparam) { const bias_ctype* bias_ptr = static_cast( param.bias(sparam.batch_id, sparam.group_id)); bias_ctype* bias_temp_ptr = static_cast(get_bias_temp_ptr(param, bundle_thread)); if (param.bias_mode == megdnn::BiasMode::BIAS) { bias_ctype* copy_dst = bias_temp_ptr; const bias_ctype* copy_src = bias_ptr + sparam.oc_cur_index * sparam.ohw + sparam.ohw_cur_index; for (size_t oc = sparam.oc_cur_index; oc < sparam.oc_end_index; oc++) { std::memcpy(copy_dst, copy_src, sizeof(bias_ctype) * sparam.output_block_size); copy_dst += sparam.output_block_size; copy_src += sparam.ohw; } } } #define INSTANTIAL_CLASS(_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \ _op_dtype, _postprocess_mode) \ template class Strategy<_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \ _op_dtype, _postprocess_mode, PackMode::NO_PACK, \ FormatMode::NCHW>; INSTANTIAL_CLASS(dt_float32, dt_float32, dt_float32, dt_float32, dt_float32, megdnn::PostprocessMode::FLOAT) #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC INSTANTIAL_CLASS(dt_float16, dt_float16, dt_float16, __fp16, __fp16, megdnn::PostprocessMode::FLOAT) #else #if !MEGDNN_DISABLE_FLOAT16 INSTANTIAL_CLASS(dt_float16, dt_float16, dt_float16, dt_float16, dt_float16, megdnn::PostprocessMode::NO_PROCESS) #endif #endif #if MEGDNN_AARCH64 || MEGDNN_ARMV7 //! x86 do not have uint8 matmul so only armv7 armv8 support uint8 INSTANTIAL_CLASS(dt_uint8, dt_int32, dt_uint8, dt_qint32, dt_quint8, megdnn::PostprocessMode::QUANTIZED) INSTANTIAL_CLASS(dt_uint8, dt_int32, dt_int32, dt_qint32, dt_qint32, megdnn::PostprocessMode::NO_PROCESS) #endif INSTANTIAL_CLASS(dt_int8, dt_int32, dt_int8, dt_qint32, dt_qint8, megdnn::PostprocessMode::QUANTIZED) INSTANTIAL_CLASS(dt_int8, dt_int32, dt_int32, dt_int32, dt_int32, megdnn::PostprocessMode::NO_PROCESS) INSTANTIAL_CLASS(dt_int8, dt_int16, dt_int16, dt_int16, dt_int16, megdnn::PostprocessMode::NO_PROCESS) INSTANTIAL_CLASS(dt_int8, dt_int32, dt_int32, dt_qint32, dt_qint32, megdnn::PostprocessMode::NO_PROCESS) } // namespace megdnn // vim: syntax=cpp.doxygen