/** * \file src/jit/impl/mlir/ir/numerical.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "megbrain_build_config.h" #if MGB_JIT && MGB_JIT_MLIR #include "numerical.h" namespace mgb { namespace jit { mlir::Value polynomial(ValueBuilderHelper& helper, mlir::Value x, std::vector& coeff) { size_t n = coeff.size(); if (n == 0) { return helper.const_f32(0); } mlir::Value r = coeff[0]; for (size_t i = 1; i < n; i++) { r = helper.add(helper.mul(r, x), coeff[i]); } return r; } // polynomial approximation of arctangent // atan(t) = t + c3 * t^3 + c5 * t^5 + ... + c17 * t^17 // original paper: // https://arxiv.org/pdf/1508.03211.pdf mlir::Value atan2_approx(ValueBuilderHelper& helper, mlir::Value y, mlir::Value x) { auto atan_poly = [&](mlir::Value t) { std::vector coeff = { helper.const_f32(2.90188402868807315826416015625E-3), helper.const_f32(-1.62907354533672332763671875E-2), helper.const_f32(4.3082617223262786865234375E-2), helper.const_f32(-7.5408883392810821533203125E-2), helper.const_f32(0.1066047251224517822265625), helper.const_f32(-0.14209578931331634521484375), helper.const_f32(0.19993579387664794921875), helper.const_f32(-0.3333314359188079833984375)}; auto t2 = helper.mul(t, t); auto p = polynomial(helper, t2, coeff); return helper.add(helper.mul(helper.mul(p, t2), t), t); }; // constants auto zero = helper.const_f32(0); auto pi = helper.const_f32(3.141592653589793); auto pi_over_2 = helper.const_f32(1.570796326794897); // transform the angle into interval [0, pi/4] auto ax = helper.abs(x); auto ay = helper.abs(y); auto q = helper.div(helper.min(ax, ay), helper.max(ax, ay)); // get approximation for interval [0, pi/4] auto r = atan_poly(q); // [0, pi/4] => [0, pi/2] r = helper.select(helper.le(ax, ay), helper.sub(pi_over_2, r), r); // [0, pi/2] => [0, pi] r = helper.select(helper.le(x, zero), helper.sub(pi, r), r); // [0, pi] => [-pi, pi] r = helper.select(helper.le(y, zero), helper.sub(zero, r), r); return r; } // numerical approximation of gauss error function // https://en.wikipedia.org/wiki/Error_function#Polynomial // original book: // Numerical Recipes in Fortran 77: The Art of Scientific Computing mlir::Value erf_approx(ValueBuilderHelper& helper, mlir::Value x) { auto zero = helper.const_f32(0); auto one = helper.const_f32(1); auto half = helper.const_f32(0.5); auto t = helper.div(one, helper.add(one, helper.mul(half, helper.abs(x)))); std::vector coeff = { helper.const_f32(0.17087277), helper.const_f32(-0.82215223), helper.const_f32(1.48851587), helper.const_f32(-1.13520398), helper.const_f32(0.27886807), helper.const_f32(-0.18628806), helper.const_f32(0.09678418), helper.const_f32(0.37409196), helper.const_f32(1.00002368), helper.const_f32(-1.26551223)}; auto p = polynomial(helper, t, coeff); auto r = helper.mul(t, helper.exp(helper.sub(p, helper.mul(x, x)))); return helper.select(helper.ge(x, zero), helper.sub(one, r), helper.sub(r, one)); } // numerical approximation of the inverse of normal distribution function // original algorithm: // https://github.com/scipy/scipy/blob/master/scipy/special/cephes/ndtri.c // case 1: 0 < x < exp(-2) // z = sqrt(-2 * log(x)) // t = 1 / z // res = log(z) / z - z + t * P(t) / Q(t) // where coefficients of P and Q are different // for z < 8 and for z >= 8 // // case2: exp(-2) <= x <= 1 - exp(-2) // w = x - 0.5 // res = sqrt(2pi) * (w + w^3 * R(w^2) / S(w^2)) // // case3: 1 - exp(-2) < x < 1 // 0 < 1 - x < exp(-2) // ndtri(x) = -ndtri(1 - x) // fallback to case 1 mlir::Value ndtri_approx(ValueBuilderHelper& helper, mlir::Value x) { // polynomial P auto P = [&](mlir::Value i, mlir::Value cond) { std::vector coeff0 = { helper.const_f32(4.05544892305962419923E0), helper.const_f32(3.15251094599893866154E1), helper.const_f32(5.71628192246421288162E1), helper.const_f32(4.40805073893200834700E1), helper.const_f32(1.46849561928858024014E1), helper.const_f32(2.18663306850790267539E0), helper.const_f32(-1.40256079171354495875E-1), helper.const_f32(-3.50424626827848203418E-2), helper.const_f32(-8.57456785154685413611E-4)}; std::vector coeff1 = { helper.const_f32(3.23774891776946035970E0), helper.const_f32(6.91522889068984211695E0), helper.const_f32(3.93881025292474443415E0), helper.const_f32(1.33303460815807542389E0), helper.const_f32(2.01485389549179081538E-1), helper.const_f32(1.23716634817820021358E-2), helper.const_f32(3.01581553508235416007E-4), helper.const_f32(2.65806974686737550832E-6), helper.const_f32(6.23974539184983293730E-9)}; return helper.select(cond, polynomial(helper, i, coeff0), polynomial(helper, i, coeff1)); }; // polynomial Q auto Q = [&](mlir::Value i, mlir::Value cond) { std::vector coeff0 = { helper.const_f32(1.f), helper.const_f32(1.57799883256466749731E1), helper.const_f32(4.53907635128879210584E1), helper.const_f32(4.13172038254672030440E1), helper.const_f32(1.50425385692907503408E1), helper.const_f32(2.50464946208309415979E0), helper.const_f32(-1.42182922854787788574E-1), helper.const_f32(-3.80806407691578277194E-2), helper.const_f32(-9.33259480895457427372E-4)}; std::vector coeff1 = { helper.const_f32(1.f), helper.const_f32(6.02427039364742014255E0), helper.const_f32(3.67983563856160859403E0), helper.const_f32(1.37702099489081330271E0), helper.const_f32(2.16236993594496635890E-1), helper.const_f32(1.34204006088543189037E-2), helper.const_f32(3.28014464682127739104E-4), helper.const_f32(2.89247864745380683936E-6), helper.const_f32(6.79019408009981274425E-9)}; return helper.select(cond, polynomial(helper, i, coeff0), polynomial(helper, i, coeff1)); }; // polynomial R auto R = [&](mlir::Value i) { std::vector coeff = { helper.const_f32(-5.99633501014107895267E1), helper.const_f32(9.80010754185999661536E1), helper.const_f32(-5.66762857469070293439E1), helper.const_f32(1.39312609387279679503E1), helper.const_f32(-1.23916583867381258016E0)}; return polynomial(helper, i, coeff); }; // polynomial S auto S = [&](mlir::Value i) { std::vector coeff = { helper.const_f32(1.f), helper.const_f32(1.95448858338141759834E0), helper.const_f32(4.67627912898881538453E0), helper.const_f32(8.63602421390890590575E1), helper.const_f32(-2.25462687854119370527E2), helper.const_f32(2.00260212380060660359E2), helper.const_f32(-8.20372256168333339912E1), helper.const_f32(1.59056225126211695515E1), helper.const_f32(-1.18331621121330003142E0)}; return polynomial(helper, i, coeff); }; // constants auto zero = helper.const_f32(0); auto one = helper.const_f32(1); auto half = helper.const_f32(0.5); auto eight = helper.const_f32(8); auto minus_2 = helper.const_f32(-2); auto exp_minus_2 = helper.const_f32(0.135335283236); // exp(-2) auto sqrt_2pi = helper.const_f32(2.506628274631); // sqrt(2pi) // conditions auto case1 = helper.lt(x, exp_minus_2); // x < exp(-2) auto case3 = helper.gt(x, helper.sub(one, exp_minus_2)); // x > 1 - exp(-2) auto case13 = helper.bit_or(case1, case3); // case1 or case3 auto x13 = helper.select(case1, x, helper.sub(one, x)); // x or (1 - x) auto z = helper.sqrt(helper.mul(minus_2, helper.log(x13))); auto z_lt_8 = helper.lt(z, eight); auto t = helper.div(one, z); auto res1 = helper.add(helper.sub(helper.div(helper.log(z), z), z), helper.div(helper.mul(t, P(t, z_lt_8)), Q(t, z_lt_8))); auto res13 = helper.select(case1, res1, helper.sub(zero, res1)); // case2 auto w = helper.sub(x, half); auto w2 = helper.mul(w, w); auto w3 = helper.mul(w, w2); auto res2 = helper.mul( sqrt_2pi, helper.add(w, helper.div(helper.mul(w3, R(w2)), S(w2)))); return helper.select(case13, res13, res2); } } // namespace jit } // namespace mgb #endif // MGB_JIT && MGB_JIT_MLIR // vim: syntax=cpp.doxygen