/** * \file dnn/test/common/small_vector.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ //===- llvm/unittest/ADT/SmallVectorTest.cpp ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // SmallVector unit tests. // //===----------------------------------------------------------------------===// /** * \file common/small_vector.cpp * * This file is part of MegBrain, a deep learning framework developed by Megvii. * * \copyright Copyright (c) 2014-2021 Megvii Inc. All rights reserved. */ #include "megdnn/thin/small_vector.h" #include #include #include #include using namespace megdnn; namespace { /// A helper class that counts the total number of constructor and /// destructor calls. class Constructable { private: static int num_constructor_calls; static int num_move_constructor_calls; static int num_copy_constructor_calls; static int num_deconstructor_calls; static int num_assignment_calls; static int num_move_assignment_calls; static int num_copy_assignment_calls; static std::unordered_set destroyed_mem; bool m_constructed; int m_value; int m_id; public: Constructable() : m_constructed(true), m_value(0) { ++num_constructor_calls; m_id = num_constructor_calls; destroyed_mem.erase(this); } Constructable(int val) : m_constructed(true), m_value(val) { ++num_constructor_calls; m_id = num_constructor_calls; destroyed_mem.erase(this); } Constructable(const Constructable& src) : m_constructed(true) { m_value = src.m_value; ++num_constructor_calls; m_id = num_constructor_calls; EXPECT_TRUE(destroyed_mem.find(&src) == destroyed_mem.end()); destroyed_mem.erase(this); } Constructable(Constructable&& src) : m_constructed(true) { m_value = src.m_value; ++num_constructor_calls; ++num_move_constructor_calls; m_id = num_constructor_calls; EXPECT_TRUE(destroyed_mem.find(&src) == destroyed_mem.end()); destroyed_mem.erase(this); } ~Constructable() { EXPECT_TRUE(m_constructed); ++num_deconstructor_calls; m_constructed = false; destroyed_mem.insert(this); } Constructable& operator=(const Constructable& src) { EXPECT_TRUE(m_constructed); m_value = src.m_value; ++num_assignment_calls; ++num_copy_assignment_calls; m_id = src.m_id; EXPECT_TRUE(destroyed_mem.find(&src) == destroyed_mem.end()); return *this; } Constructable& operator=(Constructable&& src) { EXPECT_TRUE(m_constructed); m_value = src.m_value; ++num_assignment_calls; ++num_move_assignment_calls; m_id = src.m_id; return *this; } int get_value() const { return abs(m_value); } static void reset() { num_constructor_calls = 0; num_move_constructor_calls = 0; num_copy_constructor_calls = 0; num_deconstructor_calls = 0; num_assignment_calls = 0; num_move_assignment_calls = 0; num_copy_assignment_calls = 0; destroyed_mem.clear(); } static int get_num_constructor_calls() { return num_constructor_calls; } static int get_num_move_constructor_calls() { return num_move_constructor_calls; } static int get_num_copy_constructor_calls() { return num_copy_constructor_calls; } static int get_num_destructor_calls() { return num_deconstructor_calls; } static int get_num_assignment_calls() { return num_assignment_calls; } static int get_num_move_assignment_calls() { return num_move_assignment_calls; } static int get_num_copy_assignment_calls() { return num_copy_assignment_calls; } bool operator==(const Constructable& rhs) const { return this->get_value() == rhs.get_value(); } bool operator!=(const Constructable& rhs) const { return this->get_value() != rhs.get_value(); } }; int Constructable::num_constructor_calls; int Constructable::num_copy_constructor_calls; int Constructable::num_move_constructor_calls; int Constructable::num_deconstructor_calls; int Constructable::num_assignment_calls; int Constructable::num_copy_assignment_calls; int Constructable::num_move_assignment_calls; std::unordered_set Constructable::destroyed_mem; struct NonCopyable { NonCopyable() {} NonCopyable(NonCopyable&&) {} NonCopyable& operator=(NonCopyable&&) { return *this; } private: NonCopyable(const NonCopyable&) = delete; NonCopyable& operator=(const NonCopyable&) = delete; }; struct MoveOnly { int val; MoveOnly(int v) : val{v} {} MoveOnly(MoveOnly&& rhs) : val{rhs.val} { rhs.val = 0; } MoveOnly& operator=(MoveOnly&& rhs) { val = rhs.val; rhs.val = 0; return *this; } private: MoveOnly(const MoveOnly&) = delete; MoveOnly& operator=(const MoveOnly&) = delete; }; __attribute__((__unused__)) void compile_test() { SmallVector v; v.resize(42); } class SmallVectorTestBase : public testing::Test { protected: void SetUp() override { Constructable::reset(); } template void assert_empty(VectorT& v) { // Size tests EXPECT_EQ(0u, v.size()); EXPECT_TRUE(v.empty()); // Iterator tests EXPECT_TRUE(v.begin() == v.end()); } // Assert that v contains the specified values, in order. template void assert_values_in_order(VectorT& v, size_t size, ...) { EXPECT_EQ(size, v.size()); va_list ap; va_start(ap, size); for (size_t i = 0; i < size; ++i) { int m_value = va_arg(ap, int); EXPECT_EQ(m_value, v[i].get_value()); } va_end(ap); } // Generate a sequence of values to initialize the vector. template void make_sequence(VectorT& v, int start, int end) { for (int i = start; i <= end; ++i) { v.push_back(Constructable(i)); } } }; // Test fixture class template class SmallVectorTest : public SmallVectorTestBase { protected: VectorT the_vector; VectorT other_vector; }; typedef ::testing::Types< SmallVector, SmallVector, SmallVector, SmallVector, SmallVector> SmallVectorTestTypes; TYPED_TEST_CASE(SmallVectorTest, SmallVectorTestTypes); // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorNonIterTest) { SCOPED_TRACE("ConstructorTest"); this->the_vector = SmallVector(2, 2); this->assert_values_in_order(this->the_vector, 2u, 2, 2); } // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorIterTest) { SCOPED_TRACE("ConstructorTest"); int arr[] = {1, 2, 3}; this->the_vector = SmallVector(std::begin(arr), std::end(arr)); this->assert_values_in_order(this->the_vector, 3u, 1, 2, 3); } // New vector test. TYPED_TEST(SmallVectorTest, EmptyVectorTest) { SCOPED_TRACE("EmptyVectorTest"); this->assert_empty(this->the_vector); EXPECT_TRUE(this->the_vector.rbegin() == this->the_vector.rend()); EXPECT_EQ(0, Constructable::get_num_constructor_calls()); EXPECT_EQ(0, Constructable::get_num_destructor_calls()); } // Simple insertions and deletions. TYPED_TEST(SmallVectorTest, PushPopTest) { SCOPED_TRACE("PushPopTest"); // Track whether the vector will potentially have to grow. bool require_growth = this->the_vector.capacity() < 3; // Push an element this->the_vector.push_back(Constructable(1)); // Size tests this->assert_values_in_order(this->the_vector, 1u, 1); EXPECT_FALSE(this->the_vector.begin() == this->the_vector.end()); EXPECT_FALSE(this->the_vector.empty()); // Push another element this->the_vector.push_back(Constructable(2)); this->assert_values_in_order(this->the_vector, 2u, 1, 2); // Insert at beginning this->the_vector.insert(this->the_vector.begin(), this->the_vector[1]); this->assert_values_in_order(this->the_vector, 3u, 2, 1, 2); // Pop one element this->the_vector.pop_back(); this->assert_values_in_order(this->the_vector, 2u, 2, 1); // Pop remaining elements this->the_vector.pop_back(); this->the_vector.pop_back(); this->assert_empty(this->the_vector); // Check number of constructor calls. Should be 2 for each list element, // one for the argument to push_back, one for the argument to insert, // and one for the list element itself. if (!require_growth) { // Original test expected number is 5, however, after fixing the bug of // out of range while inserting element within vector, the // CopyConstructor would be called 1 more times. EXPECT_EQ(6, Constructable::get_num_constructor_calls()); EXPECT_EQ(6, Constructable::get_num_destructor_calls()); } else { // If we had to grow the vector, these only have a lower bound, but // should // always be equal. EXPECT_LE(5, Constructable::get_num_constructor_calls()); EXPECT_EQ(Constructable::get_num_constructor_calls(), Constructable::get_num_destructor_calls()); } } // Clear test. TYPED_TEST(SmallVectorTest, ClearTest) { SCOPED_TRACE("ClearTest"); this->the_vector.reserve(2); this->make_sequence(this->the_vector, 1, 2); this->the_vector.clear(); this->assert_empty(this->the_vector); EXPECT_EQ(4, Constructable::get_num_constructor_calls()); EXPECT_EQ(4, Constructable::get_num_destructor_calls()); } // Resize smaller test. TYPED_TEST(SmallVectorTest, ResizeShrinkTest) { SCOPED_TRACE("ResizeShrinkTest"); this->the_vector.reserve(3); this->make_sequence(this->the_vector, 1, 3); this->the_vector.resize(1); this->assert_values_in_order(this->the_vector, 1u, 1); EXPECT_EQ(6, Constructable::get_num_constructor_calls()); EXPECT_EQ(5, Constructable::get_num_destructor_calls()); } // Resize bigger test. TYPED_TEST(SmallVectorTest, ResizeGrowTest) { SCOPED_TRACE("ResizeGrowTest"); this->the_vector.resize(2); EXPECT_EQ(2, Constructable::get_num_constructor_calls()); EXPECT_EQ(0, Constructable::get_num_destructor_calls()); EXPECT_EQ(2u, this->the_vector.size()); } TYPED_TEST(SmallVectorTest, ResizeWithElementsTest) { this->the_vector.resize(2); Constructable::reset(); this->the_vector.resize(4); size_t ctors = Constructable::get_num_constructor_calls(); EXPECT_TRUE(ctors == 2 || ctors == 4); size_t movectors = Constructable::get_num_move_constructor_calls(); EXPECT_TRUE(movectors == 0 || movectors == 2); size_t dtors = Constructable::get_num_destructor_calls(); EXPECT_TRUE(dtors == 0 || dtors == 2); } // Resize with fill m_value. TYPED_TEST(SmallVectorTest, ResizeFillTest) { SCOPED_TRACE("ResizeFillTest"); this->the_vector.resize(3, Constructable(77)); this->assert_values_in_order(this->the_vector, 3u, 77, 77, 77); } // Overflow past fixed size. TYPED_TEST(SmallVectorTest, OverflowTest) { SCOPED_TRACE("OverflowTest"); // Push more elements than the fixed size. this->make_sequence(this->the_vector, 1, 10); // Test size and values. EXPECT_EQ(10u, this->the_vector.size()); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i + 1, this->the_vector[i].get_value()); } // Now resize back to fixed size. this->the_vector.resize(1); this->assert_values_in_order(this->the_vector, 1u, 1); } // Iteration tests. TYPED_TEST(SmallVectorTest, IterationTest) { this->make_sequence(this->the_vector, 1, 2); // Forward Iteration typename TypeParam::iterator it = this->the_vector.begin(); EXPECT_TRUE(*it == this->the_vector.front()); EXPECT_TRUE(*it == this->the_vector[0]); EXPECT_EQ(1, it->get_value()); ++it; EXPECT_TRUE(*it == this->the_vector[1]); EXPECT_TRUE(*it == this->the_vector.back()); EXPECT_EQ(2, it->get_value()); ++it; EXPECT_TRUE(it == this->the_vector.end()); --it; EXPECT_TRUE(*it == this->the_vector[1]); EXPECT_EQ(2, it->get_value()); --it; EXPECT_TRUE(*it == this->the_vector[0]); EXPECT_EQ(1, it->get_value()); // Reverse Iteration typename TypeParam::reverse_iterator rit = this->the_vector.rbegin(); EXPECT_TRUE(*rit == this->the_vector[1]); EXPECT_EQ(2, rit->get_value()); ++rit; EXPECT_TRUE(*rit == this->the_vector[0]); EXPECT_EQ(1, rit->get_value()); ++rit; EXPECT_TRUE(rit == this->the_vector.rend()); --rit; EXPECT_TRUE(*rit == this->the_vector[0]); EXPECT_EQ(1, rit->get_value()); --rit; EXPECT_TRUE(*rit == this->the_vector[1]); EXPECT_EQ(2, rit->get_value()); } // Swap test. TYPED_TEST(SmallVectorTest, SwapTest) { SCOPED_TRACE("SwapTest"); this->make_sequence(this->the_vector, 1, 2); this->make_sequence(this->other_vector, 1, 4); std::swap(this->the_vector, this->other_vector); this->assert_values_in_order(this->the_vector, 4u, 1, 2, 3, 4); this->assert_values_in_order(this->other_vector, 2u, 1, 2); } // Symmetric to previoud Swap Test. TYPED_TEST(SmallVectorTest, SwapReverseTest) { SCOPED_TRACE("SwapReverseTest"); this->make_sequence(this->the_vector, 1, 2); this->make_sequence(this->other_vector, 1, 4); std::swap(this->other_vector, this->the_vector); this->assert_values_in_order(this->the_vector, 4u, 1, 2, 3, 4); this->assert_values_in_order(this->other_vector, 2u, 1, 2); } // Swap two vectors with different default size N. TYPED_TEST(SmallVectorTest, SwapSpecificSizeWithoutGrowingTest) { SCOPED_TRACE("SwapSpecificSizeWithoutGrowingTest"); SmallVector other_vector; // not grow. this->make_sequence(other_vector, 1, 2); this->make_sequence(this->the_vector, 1, 3); std::swap(other_vector, this->the_vector); this->assert_values_in_order(other_vector, 3u, 1, 2, 3); this->assert_values_in_order(this->the_vector, 2u, 1, 2); } // Swap two vectors with different default size N. TYPED_TEST(SmallVectorTest, SwapSpecificSizeWithGrowingTest) { SCOPED_TRACE("SwapSpecificSizeWithGrowingTest"); SmallVector other_vector; // grow this->make_sequence(other_vector, 1, 4); this->make_sequence(this->the_vector, 1, 3); std::swap(other_vector, this->the_vector); this->assert_values_in_order(other_vector, 3u, 1, 2, 3); this->assert_values_in_order(this->the_vector, 4u, 1, 2, 3, 4); } // Append test TYPED_TEST(SmallVectorTest, AppendTest) { SCOPED_TRACE("AppendTest"); this->make_sequence(this->other_vector, 2, 3); this->the_vector.push_back(Constructable(1)); this->the_vector.append(this->other_vector.begin(), this->other_vector.end()); this->assert_values_in_order(this->the_vector, 3u, 1, 2, 3); } // Append repeated test TYPED_TEST(SmallVectorTest, AppendRepeatedTest) { SCOPED_TRACE("AppendRepeatedTest"); this->the_vector.push_back(Constructable(1)); this->the_vector.append(2, Constructable(77)); this->assert_values_in_order(this->the_vector, 3u, 1, 77, 77); } // Append test TYPED_TEST(SmallVectorTest, AppendNonIterTest) { SCOPED_TRACE("AppendRepeatedTest"); this->the_vector.push_back(Constructable(1)); this->the_vector.append(2, 7); this->assert_values_in_order(this->the_vector, 3u, 1, 7, 7); } struct OutputIterator { typedef std::output_iterator_tag iterator_category; typedef int value_type; typedef int difference_type; typedef value_type* pointer; typedef value_type& reference; operator int() { return 2; } operator Constructable() { return 7; } }; TYPED_TEST(SmallVectorTest, AppendRepeatedNonForwardIterator) { SCOPED_TRACE("AppendRepeatedTest"); this->the_vector.push_back(Constructable(1)); this->the_vector.append(OutputIterator(), OutputIterator()); this->assert_values_in_order(this->the_vector, 3u, 1, 7, 7); } // Assign test TYPED_TEST(SmallVectorTest, AssignTest) { SCOPED_TRACE("AssignTest"); this->the_vector.push_back(Constructable(1)); this->the_vector.assign(2, Constructable(77)); this->assert_values_in_order(this->the_vector, 2u, 77, 77); } // Assign test TYPED_TEST(SmallVectorTest, AssignRangeTest) { SCOPED_TRACE("AssignTest"); this->the_vector.push_back(Constructable(1)); int arr[] = {1, 2, 3}; this->the_vector.assign(std::begin(arr), std::end(arr)); this->assert_values_in_order(this->the_vector, 3u, 1, 2, 3); } // Assign test TYPED_TEST(SmallVectorTest, AssignNonIterTest) { SCOPED_TRACE("AssignTest"); this->the_vector.push_back(Constructable(1)); this->the_vector.assign(2, 7); this->assert_values_in_order(this->the_vector, 2u, 7, 7); } // Move-assign test TYPED_TEST(SmallVectorTest, MoveAssignTest) { SCOPED_TRACE("MoveAssignTest"); // Set up our vector with a single element, but enough capacity for 4. this->the_vector.reserve(4); this->the_vector.push_back(Constructable(1)); // Set up the other vector with 2 elements. this->other_vector.push_back(Constructable(2)); this->other_vector.push_back(Constructable(3)); // Move-assign from the other vector. this->the_vector = std::move(this->other_vector); // Make sure we have the right result. this->assert_values_in_order(this->the_vector, 2u, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->other_vector.clear(); EXPECT_EQ(Constructable::get_num_constructor_calls() - 2, Constructable::get_num_destructor_calls()); // There shouldn't be any live objects any more. this->the_vector.clear(); EXPECT_EQ(Constructable::get_num_constructor_calls(), Constructable::get_num_destructor_calls()); } // Erase a single element TYPED_TEST(SmallVectorTest, EraseTest) { SCOPED_TRACE("EraseTest"); this->make_sequence(this->the_vector, 1, 3); const auto& the_const_vector = this->the_vector; this->the_vector.erase(the_const_vector.begin()); this->assert_values_in_order(this->the_vector, 2u, 2, 3); } // Erase a range of elements TYPED_TEST(SmallVectorTest, EraseRangeTest) { SCOPED_TRACE("EraseRangeTest"); this->make_sequence(this->the_vector, 1, 3); const auto& the_const_vector = this->the_vector; this->the_vector.erase(the_const_vector.begin(), the_const_vector.begin() + 2); this->assert_values_in_order(this->the_vector, 1u, 3); } // Insert a single element. TYPED_TEST(SmallVectorTest, InsertTest) { SCOPED_TRACE("InsertTest"); this->make_sequence(this->the_vector, 1, 3); typename TypeParam::iterator it = this->the_vector.insert( this->the_vector.begin() + 1, Constructable(77)); EXPECT_EQ(this->the_vector.begin() + 1, it); this->assert_values_in_order(this->the_vector, 4u, 1, 77, 2, 3); } // Insert a copy of a single element. TYPED_TEST(SmallVectorTest, InsertCopy) { SCOPED_TRACE("InsertTest"); this->make_sequence(this->the_vector, 1, 3); Constructable c(77); typename TypeParam::iterator it = this->the_vector.insert(this->the_vector.begin() + 1, c); EXPECT_EQ(this->the_vector.begin() + 1, it); this->assert_values_in_order(this->the_vector, 4u, 1, 77, 2, 3); } // Insert repeated elements. TYPED_TEST(SmallVectorTest, InsertRepeatedTest) { SCOPED_TRACE("InsertRepeatedTest"); this->make_sequence(this->the_vector, 1, 4); Constructable::reset(); auto it = this->the_vector.insert(this->the_vector.begin() + 1, 2, Constructable(16)); // Move construct the top element into newly allocated space, and optionally // reallocate the whole buffer, move constructing into it. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 4 move // constructions here. EXPECT_TRUE(Constructable::get_num_move_constructor_calls() == 2 || Constructable::get_num_move_constructor_calls() == 6); // Move assign the next two to shift them up and make a gap. EXPECT_EQ(1, Constructable::get_num_move_assignment_calls()); // Copy construct the two new elements from the parameter. EXPECT_EQ(2, Constructable::get_num_copy_assignment_calls()); // All without any copy construction. // EXPECT_EQ(0, Constructable::get_num_copy_constructor_calls()); EXPECT_EQ(this->the_vector.begin() + 1, it); this->assert_values_in_order(this->the_vector, 6u, 1, 16, 16, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedNonIterTest) { SCOPED_TRACE("InsertRepeatedTest"); this->make_sequence(this->the_vector, 1, 4); Constructable::reset(); auto it = this->the_vector.insert(this->the_vector.begin() + 1, 2, 7); EXPECT_EQ(this->the_vector.begin() + 1, it); this->assert_values_in_order(this->the_vector, 6u, 1, 7, 7, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedAtEndTest) { SCOPED_TRACE("InsertRepeatedTest"); this->make_sequence(this->the_vector, 1, 4); Constructable::reset(); auto it = this->the_vector.insert(this->the_vector.end(), 2, Constructable(16)); // Just copy construct them into newly allocated space // EXPECT_EQ(2, Constructable::get_num_copy_constructor_calls()); // Move everything across if reallocation is needed. EXPECT_TRUE(Constructable::get_num_move_constructor_calls() == 0 || Constructable::get_num_move_constructor_calls() == 4); // Without ever moving or copying anything else. EXPECT_EQ(0, Constructable::get_num_copy_assignment_calls()); EXPECT_EQ(0, Constructable::get_num_move_assignment_calls()); EXPECT_EQ(this->the_vector.begin() + 4, it); this->assert_values_in_order(this->the_vector, 6u, 1, 2, 3, 4, 16, 16); } TYPED_TEST(SmallVectorTest, InsertRepeatedEmptyTest) { SCOPED_TRACE("InsertRepeatedTest"); this->make_sequence(this->the_vector, 10, 15); // Empty insert. EXPECT_EQ(this->the_vector.end(), this->the_vector.insert(this->the_vector.end(), 0, Constructable(42))); EXPECT_EQ(this->the_vector.begin() + 1, this->the_vector.insert(this->the_vector.begin() + 1, 0, Constructable(42))); } // Insert range. TYPED_TEST(SmallVectorTest, InsertRangeTest) { SCOPED_TRACE("InsertRangeTest"); Constructable arr[3] = {Constructable(77), Constructable(77), Constructable(77)}; this->make_sequence(this->the_vector, 1, 3); Constructable::reset(); auto it = this->the_vector.insert(this->the_vector.begin() + 1, arr, arr + 3); // Move construct the top 3 elements into newly allocated space. // Possibly move the whole sequence into new space first. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 3 move // constructions here. EXPECT_TRUE(Constructable::get_num_move_constructor_calls() == 2 || Constructable::get_num_move_constructor_calls() == 5); // Copy assign the lower 2 new elements into existing space. EXPECT_EQ(2, Constructable::get_num_copy_assignment_calls()); // Copy construct the third element into newly allocated space. // EXPECT_EQ(1, Constructable::get_num_copy_constructor_calls()); EXPECT_EQ(this->the_vector.begin() + 1, it); this->assert_values_in_order(this->the_vector, 6u, 1, 77, 77, 77, 2, 3); } TYPED_TEST(SmallVectorTest, InsertRangeAtEndTest) { SCOPED_TRACE("InsertRangeTest"); Constructable arr[3] = {Constructable(77), Constructable(77), Constructable(77)}; this->make_sequence(this->the_vector, 1, 3); // Insert at end. Constructable::reset(); auto it = this->the_vector.insert(this->the_vector.end(), arr, arr + 3); // Copy construct the 3 elements into new space at the top. // EXPECT_EQ(3, Constructable::get_num_copy_constructor_calls()); // Don't copy/move anything else. EXPECT_EQ(0, Constructable::get_num_copy_assignment_calls()); // Reallocation might occur, causing all elements to be moved into the new // buffer. EXPECT_TRUE(Constructable::get_num_move_constructor_calls() == 0 || Constructable::get_num_move_constructor_calls() == 3); EXPECT_EQ(0, Constructable::get_num_move_assignment_calls()); EXPECT_EQ(this->the_vector.begin() + 3, it); this->assert_values_in_order(this->the_vector, 6u, 1, 2, 3, 77, 77, 77); } TYPED_TEST(SmallVectorTest, InsertEmptyRangeTest) { SCOPED_TRACE("InsertRangeTest"); this->make_sequence(this->the_vector, 1, 3); // Empty insert. EXPECT_EQ(this->the_vector.end(), this->the_vector.insert(this->the_vector.end(), this->the_vector.begin(), this->the_vector.begin())); EXPECT_EQ(this->the_vector.begin() + 1, this->the_vector.insert(this->the_vector.begin() + 1, this->the_vector.begin(), this->the_vector.begin())); } // Comparison tests. TYPED_TEST(SmallVectorTest, ComparisonTest) { SCOPED_TRACE("ComparisonTest"); this->make_sequence(this->the_vector, 1, 3); this->make_sequence(this->other_vector, 1, 3); EXPECT_TRUE(this->the_vector == this->other_vector); EXPECT_FALSE(this->the_vector != this->other_vector); this->other_vector.clear(); this->make_sequence(this->other_vector, 2, 4); EXPECT_FALSE(this->the_vector == this->other_vector); EXPECT_TRUE(this->the_vector != this->other_vector); } // Constant vector tests. TYPED_TEST(SmallVectorTest, ConstVectorTest) { const TypeParam const_vector; EXPECT_EQ(0u, const_vector.size()); EXPECT_TRUE(const_vector.empty()); EXPECT_TRUE(const_vector.begin() == const_vector.end()); } // Direct array access. TYPED_TEST(SmallVectorTest, DirectVectorTest) { EXPECT_EQ(0u, this->the_vector.size()); this->the_vector.reserve(4); EXPECT_LE(4u, this->the_vector.capacity()); EXPECT_EQ(0, Constructable::get_num_constructor_calls()); this->the_vector.push_back(1); this->the_vector.push_back(2); this->the_vector.push_back(3); this->the_vector.push_back(4); EXPECT_EQ(4u, this->the_vector.size()); EXPECT_EQ(8, Constructable::get_num_constructor_calls()); EXPECT_EQ(1, this->the_vector[0].get_value()); EXPECT_EQ(2, this->the_vector[1].get_value()); EXPECT_EQ(3, this->the_vector[2].get_value()); EXPECT_EQ(4, this->the_vector[3].get_value()); } TYPED_TEST(SmallVectorTest, IteratorTest) { std::list list; this->the_vector.insert(this->the_vector.end(), list.begin(), list.end()); } template class DualSmallVectorsTest; template class DualSmallVectorsTest> : public SmallVectorTestBase { protected: VectorT1 the_vector; VectorT2 other_vector; template static unsigned num_builtin_elms(const SmallVector&) { return N; } }; typedef ::testing::Types< // Small mode -> Small mode. std::pair, SmallVector>, // Small mode -> Big mode. std::pair, SmallVector>, // Big mode -> Small mode. std::pair, SmallVector>, // Big mode -> Big mode. std::pair, SmallVector>> DualSmallVectorTestTypes; TYPED_TEST_CASE(DualSmallVectorsTest, DualSmallVectorTestTypes); TYPED_TEST(DualSmallVectorsTest, MoveAssignment) { SCOPED_TRACE("MoveAssignTest-DualVectorTypes"); // Set up our vector with four elements. for (unsigned it = 0; it < 4; ++it) this->other_vector.push_back(Constructable(it)); const Constructable* orig_data_ptr = this->other_vector.data(); // Move-assign from the other vector. this->the_vector = std::move( static_cast&>(this->other_vector)); // Make sure we have the right result. this->assert_values_in_order(this->the_vector, 4u, 0, 1, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->other_vector.clear(); EXPECT_EQ(Constructable::get_num_constructor_calls() - 4, Constructable::get_num_destructor_calls()); // If the source vector (other_vector) was in small-mode, assert that we // just // moved the data pointer over. EXPECT_TRUE(this->num_builtin_elms(this->other_vector) == 4 || this->the_vector.data() == orig_data_ptr); // There shouldn't be any live objects any more. this->the_vector.clear(); EXPECT_EQ(Constructable::get_num_constructor_calls(), Constructable::get_num_destructor_calls()); // We shouldn't have copied anything in this whole process. // EXPECT_EQ(Constructable::get_num_copy_constructor_calls(), 0); } struct NotAssignable { int& x; NotAssignable(int& x) : x(x) {} }; TEST(SmallVectorCustomTest, NoAssignTest) { int x = 0; SmallVector vec; vec.push_back(NotAssignable(x)); x = 42; EXPECT_EQ(42, vec.pop_back_val().x); } struct MovedFrom { bool has_value; MovedFrom() : has_value(true) {} MovedFrom(MovedFrom&& m) : has_value(m.has_value) { m.has_value = false; } MovedFrom& operator=(MovedFrom&& m) { has_value = m.has_value; m.has_value = false; return *this; } }; TEST(SmallVectorTest, MidInsert) { SmallVector v; v.push_back(MovedFrom()); v.insert(v.begin(), MovedFrom()); for (MovedFrom& m : v) EXPECT_TRUE(m.has_value); } enum EmplaceableArgstate { EAS_Defaulted, EAS_Arg, EAS_LValue, EAS_RValue, EAS_Failure }; template struct EmplaceableArg { EmplaceableArgstate state; EmplaceableArg() : state(EAS_Defaulted) {} EmplaceableArg(EmplaceableArg&& x) : state(x.state == EAS_Arg ? EAS_RValue : EAS_Failure) {} EmplaceableArg(EmplaceableArg& x) : state(x.state == EAS_Arg ? EAS_LValue : EAS_Failure) {} explicit EmplaceableArg(bool) : state(EAS_Arg) {} private: EmplaceableArg& operator=(EmplaceableArg&&) = delete; EmplaceableArg& operator=(const EmplaceableArg&) = delete; }; enum Emplaceablestate { ES_Emplaced, ES_Moved }; struct Emplaceable { EmplaceableArg<0> a0; EmplaceableArg<1> a1; EmplaceableArg<2> a2; EmplaceableArg<3> a3; Emplaceablestate state; Emplaceable() : state(ES_Emplaced) {} template explicit Emplaceable(A0Ty&& a0) : a0(std::forward(a0)), state(ES_Emplaced) {} template Emplaceable(A0Ty&& a0, A1Ty&& a1) : a0(std::forward(a0)), a1(std::forward(a1)), state(ES_Emplaced) {} template Emplaceable(A0Ty&& a0, A1Ty&& a1, A2Ty&& a2) : a0(std::forward(a0)), a1(std::forward(a1)), a2(std::forward(a2)), state(ES_Emplaced) {} template Emplaceable(A0Ty&& a0, A1Ty&& a1, A2Ty&& a2, A3Ty&& a3) : a0(std::forward(a0)), a1(std::forward(a1)), a2(std::forward(a2)), a3(std::forward(a3)), state(ES_Emplaced) {} Emplaceable(Emplaceable&&) : state(ES_Moved) {} Emplaceable& operator=(Emplaceable&&) { state = ES_Moved; return *this; } private: Emplaceable(const Emplaceable&) = delete; Emplaceable& operator=(const Emplaceable&) = delete; }; TEST(SmallVectorTest, EmplaceBack) { EmplaceableArg<0> a0(true); EmplaceableArg<1> a1(true); EmplaceableArg<2> a2(true); EmplaceableArg<3> a3(true); { SmallVector v; v.emplace_back(); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_Defaulted); EXPECT_TRUE(v.back().a1.state == EAS_Defaulted); EXPECT_TRUE(v.back().a2.state == EAS_Defaulted); EXPECT_TRUE(v.back().a3.state == EAS_Defaulted); } { SmallVector v; v.emplace_back(std::move(a0)); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_RValue); EXPECT_TRUE(v.back().a1.state == EAS_Defaulted); EXPECT_TRUE(v.back().a2.state == EAS_Defaulted); EXPECT_TRUE(v.back().a3.state == EAS_Defaulted); } { SmallVector v; v.emplace_back(a0); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_LValue); EXPECT_TRUE(v.back().a1.state == EAS_Defaulted); EXPECT_TRUE(v.back().a2.state == EAS_Defaulted); EXPECT_TRUE(v.back().a3.state == EAS_Defaulted); } { SmallVector v; v.emplace_back(a0, a1); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_LValue); EXPECT_TRUE(v.back().a1.state == EAS_LValue); EXPECT_TRUE(v.back().a2.state == EAS_Defaulted); EXPECT_TRUE(v.back().a3.state == EAS_Defaulted); } { SmallVector v; v.emplace_back(std::move(a0), std::move(a1)); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_RValue); EXPECT_TRUE(v.back().a1.state == EAS_RValue); EXPECT_TRUE(v.back().a2.state == EAS_Defaulted); EXPECT_TRUE(v.back().a3.state == EAS_Defaulted); } { SmallVector v; v.emplace_back(std::move(a0), a1, std::move(a2), a3); EXPECT_TRUE(v.size() == 1); EXPECT_TRUE(v.back().state == ES_Emplaced); EXPECT_TRUE(v.back().a0.state == EAS_RValue); EXPECT_TRUE(v.back().a1.state == EAS_LValue); EXPECT_TRUE(v.back().a2.state == EAS_RValue); EXPECT_TRUE(v.back().a3.state == EAS_LValue); } { SmallVector v; v.emplace_back(); v.emplace_back(42); EXPECT_EQ(2U, v.size()); EXPECT_EQ(0, v[0]); EXPECT_EQ(42, v[1]); } } TEST(SmallVectorTest, FindTest) { SmallVector v = {0, 1, 2, 3, 4, 5, 6, 7, 8}; EXPECT_EQ(find(v, 3), &v[3]); EXPECT_EQ(find(v, 6), &v[6]); v[3] = 6; EXPECT_EQ(find(v, 6), &v[3]); EXPECT_EQ(find(v, 2), &v[2]); } TEST(SmallVectorTest, InitializerList) { SmallVector v1 = {}; EXPECT_TRUE(v1.empty()); v1 = {0, 0}; EXPECT_TRUE(std::equal(v1.begin(), v1.end(), std::initializer_list({0, 0}).begin())); v1 = {-1, -1}; EXPECT_TRUE(std::equal(v1.begin(), v1.end(), std::initializer_list({-1, -1}).begin())); SmallVector v2 = {1, 2, 3, 4}; EXPECT_TRUE(std::equal(v2.begin(), v2.end(), std::initializer_list({1, 2, 3, 4}).begin())); v2.assign({4}); EXPECT_TRUE(std::equal(v2.begin(), v2.end(), std::initializer_list({4}).begin())); v2.append({3, 2}); EXPECT_TRUE(std::equal(v2.begin(), v2.end(), std::initializer_list({4, 3, 2}).begin())); v2.insert(v2.begin() + 1, 5); EXPECT_TRUE(std::equal(v2.begin(), v2.end(), std::initializer_list({4, 5, 3, 2}).begin())); } TEST(SmallVectorTest, PutElementWithinVectorIntoItself) { SmallVector vector; vector.emplace_back(0); for (size_t i = 0; i < 10; ++i) { vector.push_back(vector[0]); } vector.assign(30, vector[0]); vector.resize(90, vector[0]); vector.append(270, vector[0]); for (size_t i = 0; i < 1000; ++i) { vector.insert(&vector[0], vector[0]); } vector.insert(vector.begin(), 3000, vector[0]); } TEST(SmallVectorTest, SwapMoveOnly) { auto run = [](size_t nr0, size_t nr1, bool use_std_swap) { SmallVector vec0, vec1; for (size_t i = 0; i < nr0; ++i) { vec0.emplace_back(i * 2 + 1); } for (size_t i = 0; i < nr1; ++i) { vec1.emplace_back(i * 2 + 2); } if (use_std_swap) { std::swap(vec0, vec1); } else { vec0.swap(vec1); } ASSERT_EQ(nr0, vec1.size()); ASSERT_EQ(nr1, vec0.size()); for (size_t i = 0; i < nr0; ++i) { ASSERT_EQ(static_cast(i * 2 + 1), vec1[i].val); } for (size_t i = 0; i < nr1; ++i) { ASSERT_EQ(static_cast(i * 2 + 2), vec0[i].val); } }; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { run(i, j, 0); run(i, j, 1); } } } } // anonymous namespace // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}