/** * \file dnn/test/arm_common/pooling_multi_thread.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include #include "megdnn/dtype.h" #include "megdnn/opr_param_defs.h" #include "test/arm_common/fixture.h" #include "test/common/pooling.h" #include "test/common/checker.h" #include "test/common/benchmarker.h" #include "test/common/rng.h" namespace megdnn { namespace test { /*********************** mutli threads *********************************/ TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) { using Param = param::Pooling; for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; Checker checker(handle()); checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::AVERAGE; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; if (ih + p * 2 >= 5 && iw + p * 2 >= 5) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } std::vector> get_nchw44_pool_args( size_t filter, size_t stride) { constexpr size_t ic_step = 4; std::vector> args; for (size_t n : {1, 2}) for (size_t c : {4, 8}) for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}) for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}) for (size_t ph : {0, 1, 2}) for (size_t pw : {0, 1, 2}) for (auto mode : {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) if (ih + 2 * ph >= filter && iw + 2 * pw >= filter && filter > ph && filter > pw) { param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = stride; param.window_h = param.window_w = filter; args.emplace_back(std::make_pair( param, TensorShapeArray{{n, c / ic_step, ih, iw, ic_step}, {}})); } return args; } void run_pooling_check( Handle* handle, std::vector> args, bool is_int8) { Checker checker(handle); UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1}; UniformIntRNG rng_fp32{-10, 10}; if (is_int8) { checker.set_dtype(0, dtype::QuantizedS8(1.1f)); checker.set_rng(0, &rng_int8); } else { checker.set_rng(0, &rng_fp32); } for (auto arg : args) { checker.set_param(arg.first).exec(arg.second); } } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) { for (auto filter : {2, 3, 4, 5}) for (auto stride : {1, 2}) { run_pooling_check(handle(), get_nchw44_pool_args(filter, stride), false); } } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W9_w13_NCHW44) { UniformIntRNG rng{-10, 10}; Checker checker(handle()); checker.set_rng(0, &rng); // clang-format off for (size_t ih: {20, 15}) for (size_t iw: {15, 20}) for (size_t kernel: {9, 13}) for (size_t pad: {4, 6}) for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) if (kernel > pad) { param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = pad; param.pad_w = pad; param.stride_h = param.stride_w = 1; param.window_h = param.window_w = kernel ; checker.set_param(param).exec(TensorShapeArray{{2, 8, ih, iw, 4}, {}}); } // clang-format on } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44) { UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1}; Checker checker(handle()); checker.set_rng(0, &rng); // clang-format off for (size_t ih: {3, 5, 10}) for (size_t iw: {3, 5, 7, 9, 15, 20}) for (size_t ph: {0, 1, 2}) for (size_t pw: {0, 1, 2}) for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) for(auto data_type: SmallVector{dtype::QuantizedS8(1.1f), dtype::Int8()}) if (ih+2*ph >= 3 && iw+2*pw >= 3) { checker.set_dtype(0, data_type); param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 1; param.window_h = param.window_w = 3; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); param.stride_h = param.stride_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); } // clang-format on } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44) { UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1}; Checker checker(handle()); checker.set_rng(0, &rng); // clang-format off for (size_t ih: {2, 5, 10, 17}) for (size_t iw: {2, 6, 8, 16, 26}) for (size_t ph: {0, 1}) for (size_t pw: {0, 1}) for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) for(auto data_type: SmallVector{dtype::QuantizedS8(1.1f), dtype::Int8()}) if (ih+2*ph >= 2 && iw+2*pw >= 2) { checker.set_dtype(0, data_type); checker.set_dtype(1, data_type); param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 1; param.window_h = param.window_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); param.stride_h = param.stride_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); } // clang-format on } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44) { UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1}; Checker checker(handle()); checker.set_rng(0, &rng); // clang-format off for (size_t ih: {4, 10, 18, 25, 30}) for (size_t iw: {4, 12, 17, 20, 25}) for (size_t ph: {0, 1, 2}) for (size_t pw: {0, 1, 2}) for(auto data_type: SmallVector{dtype::QuantizedS8(1.1f), dtype::Int8()}) for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE}) if (ih+2*ph >= 4 && iw+2*pw >= 4) { checker.set_dtype(0, data_type); param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 1; param.window_h = param.window_w = 4; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); param.stride_h = param.stride_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); } // clang-format on } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44) { UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1}; Checker checker(handle()); checker.set_rng(0, &rng); // clang-format off for (size_t ih: {5, 9, 19, 20, 39}) for (size_t iw: {5, 12, 23, 27, 39}) for (size_t ph: {0, 1, 2}) for (size_t pw: {0, 1, 2}) for(auto data_type: SmallVector{dtype::QuantizedS8(1.1f), dtype::Int8()}) for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE}) if (ih+2*ph >= 5 && iw+2*pw >= 5) { checker.set_dtype(0, data_type); param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW44; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 1; param.window_h = param.window_w = 5; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); param.stride_h = param.stride_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}}); } // clang-format on } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2) { for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph: {0, 1, 2}) for (size_t pw: {0, 1, 2}) if (ih+2*ph >= 3 && iw+2*pw >= 3) { Checker checker(handle()); checker.set_dtype(0, dtype::Int8()); param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 3; checker.set_param(param).exec(TensorShapeArray{ {2, 3, ih, iw}, {}}); } } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2) { for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph: {0, 1}) for (size_t pw: {0, 1}) if (ih+2*ph >= 3 && iw+2*pw >= 3) { Checker checker(handle()); checker.set_dtype(0, dtype::Int8()); param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 2; checker.set_param(param).exec(TensorShapeArray{ {2, 3, ih, iw}, {}}); } } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) { Checker checker(handle()); checker.set_dtype(0, dtype::Float16{}) .set_dtype(1, dtype::Float16{}) .set_epsilon(3e-3); using Param = param::Pooling; for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23}) for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) { for (size_t window : {2, 3}) { Param param; param.mode = mode; param.window_h = param.window_w = window; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = window / 2; //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH //! == 3) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); //! test for SH = SW = 2 && FH = FW = 2 param.stride_h = param.stride_w = 2; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph : {0, 1, 2}) for (size_t pw : {0, 1, 2}) if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) { param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 3; checker.set_param(param).exec( TensorShapeArray{{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } #endif TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) { Checker checker(handle()); UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1}; UniformIntRNG rng2{0, UINT8_MAX >> 1}; using Param = param::Pooling; for (auto type : std::vector{ dtype::QuantizedS8(1.1f), dtype::Quantized8Asymm(1.1f, static_cast(3))}) { if (type.enumv() == DTypeEnum::QuantizedS8) { checker.set_rng(0, &rng1); } else { megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm); checker.set_rng(0, &rng2); } for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49}) for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) { for (size_t window : {2, 3}) { Param param; param.mode = mode; param.window_h = param.window_w = window; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = window / 2; //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || //! FH //! == 3) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); //! test for SH = SW = 2 && FH = FW = 2 param.stride_h = param.stride_w = 2; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph : {0, 1, 2}) for (size_t pw : {0, 1, 2}) if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) { param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; checker.set_param(param).exec( TensorShapeArray{{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } } TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) { using Param = param::Pooling; for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; Checker checker(handle()); checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } #if MEGDNN_WITH_BENCHMARK namespace { template void benchmark_impl(const typename Opr::Param& param, std::vector> shapes, size_t RUNS, TaskExecutorConfig&& multi_thread_config, TaskExecutorConfig&& single_thread_config, DType data_type) { std::vector multi_thread_times, single_thread_times; { auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config); auto benchmarker = Benchmarker(multi_thread_hanle.get()); benchmarker.set_times(RUNS).set_display(false).set_param(param); benchmarker.set_dtype(0, data_type); for (auto shape : shapes) { multi_thread_times.push_back(benchmarker.exec(shape) / RUNS); } } { auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config); auto benchmarker = Benchmarker(single_thread_handle.get()); benchmarker.set_times(RUNS).set_display(false).set_param(param); benchmarker.set_dtype(0, data_type); for (auto shape : shapes) { single_thread_times.push_back(benchmarker.exec(shape) / RUNS); } } printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread); printf("core_ids:"); for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) { printf("%zu ", multi_thread_config.affinity_core_set[i]); } printf(", Single thread core_id %zu\n", single_thread_config.affinity_core_set[0]); for (size_t i = 0; i < shapes.size(); i++) { auto shape = shapes[i]; printf("Case: "); for (auto sh : shape) printf("%s ", sh.to_string().c_str()); printf("%zu threads time: %f,\n single thread time: " "%f. spead up = %f, speedup/cores=%f\n", multi_thread_config.nr_thread, multi_thread_times[i], single_thread_times[i], single_thread_times[i] / multi_thread_times[i], single_thread_times[i] / multi_thread_times[i] / multi_thread_config.nr_thread); } } } // namespace TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) { constexpr size_t RUNS = 50; using Param = param::Pooling; Param param; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; std::vector> shapes; shapes.push_back({{32, 32, 215, 215}, {}}); shapes.push_back({{32, 32, 128, 128}, {}}); shapes.push_back({{8, 256, 100, 100}, {}}); shapes.push_back({{1, 256, 100, 100}, {}}); shapes.push_back({{1, 32, 100, 100}, {}}); shapes.push_back({{1, 256, 80, 80}, {}}); shapes.push_back({{1, 256, 60, 60}, {}}); shapes.push_back({{1, 256, 30, 30}, {}}); param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h, param.window_w, param.stride_h, static_cast(param.mode)); benchmark_impl(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32()); benchmark_impl(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32()); benchmark_impl(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32()); } TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) { constexpr size_t RUNS = 50; using Param = param::Pooling; Param param; param.pad_h = param.pad_w = 0; param.mode = Param::Mode::MAX; std::vector> shapes; std::vector> filter_and_stride = { {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}}; for (auto mode : {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) { for (auto filter : filter_and_stride) { shapes.push_back({{1, 32 * 4, 215, 215}, {}}); shapes.push_back({{1, 32 * 4, 128, 128}, {}}); shapes.push_back({{1, 16 * 4, 56, 56}, {}}); param.mode = mode; param.window_h = param.window_w = filter[0]; param.stride_h = param.stride_w = filter[1]; param.format = Param::Format::NCHW; printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h, param.window_h, param.stride_h, static_cast(param.mode)); benchmark_impl(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::QuantizedS8(1.1f)); shapes.clear(); shapes.push_back({{1, 32, 215, 215, 4}, {}}); shapes.push_back({{1, 32, 128, 128, 4}, {}}); shapes.push_back({{1, 16, 56, 56, 4}, {}}); param.format = Param::Format::NCHW44; printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h, param.window_w, param.stride_h, static_cast(param.mode)); benchmark_impl(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::QuantizedS8(1.1f)); shapes.clear(); } } } #endif } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen