/** * \file src/gopt/test/network.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "megbrain/test/helper.h" #include "megbrain/gopt/framework.h" #include "megbrain/opr/basic_arith_wrapper.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/nn_int.h" #include "megbrain/opr/tensor_gen.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" namespace mgb { class Network { private: HostTensorGenerator<> gen; CompNode cn; public: std::shared_ptr graph = ComputingGraph::make(); Network(CompNode cn_) : cn{cn_} {} ~Network() noexcept = default; using KernSize = SmallVector; using Stride = SmallVector; using Padding = SmallVector; SymbolVar add_var(const char* name, const TensorShape& shp = {1}) { return opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name); } SymbolVar add_cvar(const char* name, const TensorShape& shp = {1}) { return opr::SharedDeviceTensor::make(*graph, *gen(shp), cn).rename(name); } SymbolVar add_conv( SymbolVar f, size_t output_channels, KernSize kern_size, DType out_dtype = dtype::Float32(), bool has_relu = true, Stride stride = {1, 1}, Padding padding = {0, 0}); SymbolVar add_deconv( SymbolVar f, size_t ratio, size_t output_channels, DType out_dtype); SymbolVar add_elemwise( const SymbolVarArray inps, DType out_dtype = dtype::Float32(), opr::Elemwise::Param::Mode mode = opr::Elemwise::Param::Mode::ADD); using Window = SmallVector; SymbolVar add_pooling( SymbolVar f, Window window, Stride stride = {1, 1}, Padding padding = {0, 0}, opr::Pooling::Param::Mode mode = opr::Pooling::Param::Mode::MAX); SymbolVar add_type_cvt(SymbolVar f, DType out_dtype = dtype::Float32()); }; SymbolVar create_block( Network& network, SymbolVar f, size_t stride, size_t num_outputs1, bool has_proj = false, DType out_dtype = dtype::Float32()); SymbolVar make_resnet18( Network& network, size_t batch = 16, DType out_dtype = dtype::Float32()); SymbolVarArray make_det( Network& network, size_t batch = 16, DType out_dtype = dtype::Float32()); } // namespace mgb // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}