/** * \file src/jit/impl/nvrtc/compiler_cuda.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./compiler_cuda.h" #include #include "./codegen_cuda.h" #include "megbrain/common.h" #include "megbrain/comp_node_env.h" #include "megbrain/jit/param_elem_visitor.h" #include "megbrain/jit/utils.h" #include "megbrain/utils/persistent_cache.h" #include "megbrain/utils/timer.h" #if MGB_JIT && MGB_CUDA #include #include using namespace mgb; using namespace jit; namespace { std::string NVRTCCompile(const std::string& code, int cap_major, int cap_minor) { static std::vector cuda_include_opts = get_cuda_include_opts(); auto arch_opt = ssprintf("--gpu-architecture=compute_%d%d", cap_major, cap_minor); std::vector opts; opts.push_back(arch_opt.c_str()); for (auto& inc_path : cuda_include_opts) opts.push_back(inc_path.c_str()); nvrtcProgram prog; MGB_NVRTC_CHECK(nvrtcCreateProgram(&prog, code.c_str(), nullptr, 0, nullptr, nullptr)); std::unique_ptr prog_release{ &prog, [](nvrtcProgram* p) { MGB_NVRTC_CHECK(nvrtcDestroyProgram(p)); }}; nvrtcResult compile_res = nvrtcCompileProgram(prog, opts.size(), opts.data()); size_t log_size; MGB_NVRTC_CHECK(nvrtcGetProgramLogSize(prog, &log_size)); std::string log; log.resize(log_size); MGB_NVRTC_CHECK(nvrtcGetProgramLog(prog, &log[0])); mgb_throw_if(compile_res != NVRTC_SUCCESS, SystemError, "nvrtc compile error: %s\n========= source code\n%s", log.c_str(), code.c_str()); size_t ptx_size; MGB_NVRTC_CHECK(nvrtcGetPTXSize(prog, &ptx_size)); std::string ptx; ptx.resize(ptx_size); MGB_NVRTC_CHECK(nvrtcGetPTX(prog, &ptx[0])); return ptx; } void make_fastdiv(Uint32Fastdiv& fdiv, uint32_t d) { mgb_assert(d); fdiv.m_divisor = d; constexpr uint32_t MAX_U32 = ~0u; fdiv.m_inc_dividend = 0; fdiv.m_divisor_is_not_1 = ~0u; if (!(d & (d - 1))) { // power of 2 fdiv.m_mul = 1u << 31; int p = 0; while ((1u << p) < d) ++p; mgb_assert((1u << p) == d); fdiv.m_shift = p ? p - 1 : 0; if (d == 1) fdiv.m_divisor_is_not_1 = 0; return; } auto n_bound = uint64_t(d / 2 + 1) * MAX_U32; uint32_t shift = 32; while ((1ull << shift) < n_bound) ++shift; uint64_t mdst = 1ull << shift; int64_t delta = d - mdst % d; fdiv.m_mul = mdst / d + 1; if ((uint64_t)delta > d / 2) { delta -= d; --fdiv.m_mul; fdiv.m_inc_dividend = 1; } mgb_assert((uint64_t)fdiv.m_mul * d == mdst + delta); delta = delta >= 0 ? delta : -delta; mgb_assert((uint64_t)delta * MAX_U32 < mdst); fdiv.m_shift = shift - 32; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" template void host_init_pvisitor(ParamElemVisitor& pvis, const TensorLayout& layout) { mgb_assert(layout.ndim && layout.ndim <= ndim); for (uint32_t i = 0; i < layout.ndim; ++i) { pvis.m_stride[i] = layout.stride[i]; if (i + 1 < layout.ndim) { make_fastdiv(pvis.m_shape_highdim[i], layout.shape[i + 1]); } } for (int i = layout.ndim - 1; i < ndim - 1; ++i) { make_fastdiv(pvis.m_shape_highdim[i], 1); } for (int i = layout.ndim; i < ndim; ++i) { pvis.m_stride[i] = 0; } } #pragma GCC diagnostic pop template void setup_and_launch(const JITExecutor* fusion_opr, CUfunction func, int block_size) { auto&& args = fusion_opr->args(); size_t nr_inps = args.inputs.size(); bool copy_param_to_dev = nr_inps > CudaCompiler::MAX_CUDA_NR_INPUT; SmallVector datum(nr_inps + 1); SmallVector> pvisitors; pvisitors.reserve(nr_inps); for (size_t i = 0; i < args.inputs.size(); i++) { datum[i] = reinterpret_cast( args.inputs[i].from->dev_tensor().raw_ptr()); host_init_pvisitor(pvisitors[i], args.inputs[i].layout); } datum[nr_inps] = reinterpret_cast( args.outputs[0].from->dev_tensor().as_megdnn().raw_ptr); size_t num_elements = args.outputs[0].layout.total_nr_elems(); mgb_assert(num_elements <= UINT32_MAX, "Currently JIT only supports 32 bit of elememt size for better " "performance"); int num_block = (num_elements - 1) / (block_size * 3) + 1; void* exec_args[3]; exec_args[1] = &num_elements; void* datum_dev = nullptr; void* p_visitors_dev = nullptr; const CompNodeEnv& env = CompNodeEnv::from_comp_node(fusion_opr->comp_node()); if (!copy_param_to_dev) { exec_args[0] = datum.data(); exec_args[2] = pvisitors.data(); } else { datum_dev = args.outputs[1].from->dev_tensor().as_megdnn().raw_ptr; MGB_CUDA_CHECK(cudaMemcpyAsync( datum_dev, datum.data(), (nr_inps + 1) * sizeof(CUdeviceptr), cudaMemcpyHostToDevice, env.cuda_env().stream)); p_visitors_dev = args.outputs[2].from->dev_tensor().as_megdnn().raw_ptr; MGB_CUDA_CHECK( cudaMemcpyAsync(p_visitors_dev, pvisitors.data(), nr_inps * sizeof(ParamElemVisitor), cudaMemcpyHostToDevice, env.cuda_env().stream)); exec_args[0] = &datum_dev; exec_args[2] = &p_visitors_dev; } MGB_CUDA_CU_CHECK(cuLaunchKernel(func, num_block, 1, 1, block_size, 1, 1, 0, env.cuda_env().stream, exec_args, 0)); } } // namespace void mgb::jit::_on_nvrtc_error(const char* expr, nvrtcResult nvrtc_res, const char* file, const char* func, int line) { mgb_throw(CudaError, "nvrtc error %d: %s (%s at %s:%s:%d)", int(nvrtc_res), nvrtcGetErrorString(nvrtc_res), expr, file, func, line); } /* =================== CudaExecutable ==================== */ CudaExecutable::CudaExecutable(std::string source, std::string name) : m_source{std::move(source)}, m_name{std::move(name)} {} void CudaExecutable::execute(JITExecutor* fusion_opr) { FuncCache* func; auto cn = fusion_opr->comp_node(); auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop; { MGB_LOCK_GUARD(m_mtx); func = &m_func_cache[{prop.major, prop.minor}]; } { MGB_LOCK_GUARD(func->mtx); if (func->ptx.empty()) { func->compile( "jit:nvrtc:" + PersistentCache::make_category_from_comp_node(cn), prop.major, prop.minor, this); } } func->exec(fusion_opr, this); } void CudaExecutable::FuncCache::compile(const std::string& cache_category, int major, int minor, const CudaExecutable* cuda_exe) { RealTimer timer; auto&& cache = PersistentCache::inst(); PersistentCache::Blob key{cuda_exe->m_source.data(), cuda_exe->m_source.size()}; auto ptx_cache = cache.get(cache_category, key); if (ptx_cache.valid()) { ptx.assign(static_cast(ptx_cache->ptr), ptx_cache->size); } else { ptx = NVRTCCompile(cuda_exe->m_source, major, minor); ptx_cache = PersistentCache::Blob{ptx.data(), ptx.size()}; cache.put(cache_category, key, ptx_cache.val()); } mgb_log("NVRTC JIT: compile %s for %d.%d: source_len=%zu ptx_len=%zu " "time=%.3fms", cuda_exe->m_name.c_str(), major, minor, key.size, ptx.size(), timer.get_msecs()); } void CudaExecutable::FuncCache::exec(const JITExecutor* fusion_opr, const CudaExecutable* cuda_exe) { Func* func; { MGB_LOCK_GUARD(mtx); auto ins = cn2func.insert({fusion_opr->comp_node(), {}}); func = &ins.first->second; if (ins.second) { MGB_CUDA_CU_CHECK(cuModuleLoadData(&func->module, ptx.data())); MGB_CUDA_CU_CHECK(cuModuleGetFunction(&func->func, func->module, cuda_exe->m_name.c_str())); int min_grid_size = 0; MGB_CUDA_CU_CHECK(cuOccupancyMaxPotentialBlockSize( &min_grid_size, &func->block_size, func->func, nullptr, 0, 0)); } } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-value" int out_dim = fusion_opr->args().outputs[0].layout.ndim; #define cb_outdim(EXPECTED_OUTDIM) \ if (EXPECTED_OUTDIM == out_dim) { \ setup_and_launch(fusion_opr, func->func, \ func->block_size); \ return; \ } #pragma GCC diagnostic push cb_outdim(1); cb_outdim(2); cb_outdim(3); cb_outdim(4); mgb_throw(InternalError, "unsupported out_dim=%zu", static_cast(out_dim)); #undef cb_outdim } CudaExecutable::~CudaExecutable() { for (auto&& i : m_func_cache) { for (auto&& j : i.second.cn2func) { j.first.activate(); if (auto m = j.second.module) { cuModuleUnload(m); } } } } /* ==================== CudaCompiler ===================== */ std::unique_ptr CudaCompiler::do_compile( const InternalGraph& graph, const JITExecutor::Args& args) { bool copy_param_to_dev = graph.placeholders().size() > MAX_CUDA_NR_INPUT; if (copy_param_to_dev) { mgb_log_warn( "Too many[%zu] inputs, which exceeds the limit[%zu]. JIT " "kernel function's parameters will be " "put in GPU global memory.", graph.placeholders().size(), MAX_CUDA_NR_INPUT); } std::string source, kernel_name; std::tie(kernel_name, source) = codegen_cuda(graph, args, copy_param_to_dev); auto ret = std::make_unique(std::move(source), std::move(kernel_name)); return ret; } size_t CudaCompiler::get_nr_workspace_outputs(JITExecutor* opr) const { if (opr->input().size() > MAX_CUDA_NR_INPUT) { return 2; } return 0; } void CudaCompiler::init_workspace_size_infer(JITExecutor* opr) { if (opr->output().size() == 3) { using namespace cg::static_infer; auto&& mgr = opr->owner_graph()->static_infer_manager(); TensorShape output_shape1( {(opr->input().size() + 1) * sizeof(unsigned long long)}); mgr.register_shape_infer(opr->output(1), ShapeInferDesc::make_const(output_shape1)); TensorShape output_shape2( {opr->input().size() * sizeof(ParamElemVisitor<4>)}); mgr.register_shape_infer(opr->output(2), ShapeInferDesc::make_const(output_shape2)); } } #endif // MGB_JIT && MGB_CUDA // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}