/** * \file dnn/src/naive/conv_bias/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/naive/conv_bias/opr_impl.h" #include "src/naive/convolution/helper.h" #include #include "megdnn/dtype.h" #include "src/common/utils.h" #include "src/naive/handle.h" #include "src/naive/lowbit_utils.h" #include "src/common/conv_bias.h" #include "src/common/opr_delegate.h" #include "midout.h" MIDOUT_DECL(megdnn_naive_conv_bias_fwd) namespace megdnn { namespace naive { //! Only used for naive implementation. DO NOT use the following function in //! other backends. void handle_z_inp_and_activation_naive( param::ConvBias::NonlineMode nonline_mode, const TensorND& conv_bias_tensor, const TensorND& z_tensor, const TensorND& dst_tensor, dt_byte* workspace_ptr) { auto res = dst_tensor, z_float = z_tensor; //!create naive inplace handle auto handle = inplace_cpu_handle(2); if (z_tensor.layout.ndim > 0 && z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) { dt_byte *res_float_workspace_ptr = nullptr, *z_float_workspace_ptr = nullptr; megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout)); res_float_workspace_ptr = workspace_ptr; z_float_workspace_ptr = res_float_workspace_ptr + TensorLayout{z_tensor.layout, dtype::Float32()} .span() .dist_byte(); res = TensorND{res_float_workspace_ptr, TensorLayout{dst_tensor.layout, dtype::Float32()}}; z_float = TensorND{z_float_workspace_ptr, TensorLayout{z_tensor.layout, dtype::Float32()}}; } // ====================sfb + z_tensor===================== if (z_tensor.layout.ndim > 0) { if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) { auto&& type_cvt = handle->create_operator(); type_cvt->exec(conv_bias_tensor, res); type_cvt->exec(z_tensor, z_float); } auto add_opr = handle->create_operator(); add_opr->param().mode = Elemwise::Param::Mode::ADD; add_opr->exec({res, z_float}, res); } else { res = conv_bias_tensor; } using NonlineMode = param::ConvBias::NonlineMode; switch (nonline_mode) { #define cb(_mode) \ case NonlineMode::_mode: { \ if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) { \ auto nonlinear = handle->create_operator(); \ nonlinear->param().mode = Elemwise::Param::Mode::_mode; \ if (res.layout.dtype == dst_tensor.layout.dtype) { \ nonlinear->exec({res}, dst_tensor); \ } else { \ nonlinear->exec({res}, res); \ handle->create_operator()->exec(res, dst_tensor); \ } \ } else { \ auto nonlinear = handle->create_operator(); \ nonlinear->param().mode = \ ElemwiseMultiType::Param::Mode::Q##_mode; \ nonlinear->exec({res}, dst_tensor); \ } \ break; \ } cb(RELU); cb(H_SWISH); #undef cb case NonlineMode::SIGMOID: { megdnn_assert(res.layout.dtype.category() != DTypeCategory::QUANTIZED); auto nonlinear = handle->create_operator(); nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID; nonlinear->exec({res}, res); if (res.raw_ptr != dst_tensor.raw_ptr) { handle->create_operator()->exec(res, dst_tensor); } break; } case NonlineMode::IDENTITY: { if (res.raw_ptr != dst_tensor.raw_ptr) { handle->create_operator()->exec(res, dst_tensor); } break; } default: megdnn_assert(false); } } namespace convolution { template <> void forward_bias( _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_out dst, dt_byte* workspace_ptr, const ConvBiasForward::CanonizedFilterMeta& filter_meta) { auto convert_layout = [](const TensorLayout& layout) { auto ret = layout; auto param = layout.dtype.param(); ret.dtype = dtype::Quantized8Asymm(param.scale, param.zero_point); return ret; }; TensorND new_src = {workspace_ptr, convert_layout(src.layout)}; TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(), convert_layout(filter.layout)}; uint4_to_uint8(src, new_src); uint4_to_uint8(filter, new_flt); auto new_filter_meta = filter_meta; new_filter_meta.dtype = new_flt.layout.dtype; forward_bias( new_src, new_flt, bias, dst, nullptr, new_filter_meta); } } // namespace convolution size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src, const TensorLayout& flt, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst, const PreprocessedFilter*) { size_t float_workspace_size = 0; if (z.ndim > 0 && z.dtype.category() != DTypeCategory::FLOAT) { megdnn_assert(z.eq_shape(dst)); // (w * f + b).astype(float) + (z).astype(float) float_workspace_size = 2 * TensorLayout{z, dtype::Float32()}.span().dist_byte(); } if (bias.dtype.enumv() != dst.dtype.enumv()) { return float_workspace_size + TensorLayout{dst, bias.dtype}.span().dist_byte(); } else if (src.dtype.enumv() == DTypeEnum::Quantized4Asymm && dst.dtype.enumv() == DTypeEnum::QuantizedS32) { return float_workspace_size + (src.span().dist_elem() + flt.span().dist_elem()) * sizeof(uint8_t); } return float_workspace_size; } void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z, _megdnn_tensor_out dst, const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) { MIDOUT_BEGIN(megdnn_naive_conv_bias_fwd) { dt_byte *workspace_ptr = workspace.raw_ptr; // ============================w * f + b================================ auto filter_meta = check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, workspace.size, preprocessed_filter); auto sfb = dst; if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) { // intermediate result sfb = TensorND{workspace_ptr, TensorLayout{dst.layout, bias.layout.dtype}}; workspace_ptr += sfb.layout.span().dist_byte(); } #define DISPATCH_RAW(in_dt, bias_dt, out_dt, cmode, func) \ else if (src.layout.dtype.enumv() == DTypeTrait::enumv && \ filter.layout.dtype.enumv() == DTypeTrait::enumv && \ bias.layout.dtype.enumv() == DTypeTrait::enumv && \ sfb.layout.dtype.enumv() == DTypeTrait::enumv && \ param().compute_mode == Param::ComputeMode::cmode) { \ MEGDNN_DISPATCH_CPU_KERN_OPR( \ func(src, filter, bias, sfb, workspace_ptr, filter_meta)); \ } #define DISPATCH(in_dt, out_dt) \ DISPATCH_RAW( \ in_dt, out_dt, out_dt, DEFAULT, \ (convolution::forward_bias::ctype, \ DTypeTrait::ctype, \ DTypeTrait::ctype, \ DTypeTrait::ctype>)) if (0) {} DISPATCH(Float32, Float32) DISPATCH(Int8, Int16) DISPATCH(Int8, Int32) DISPATCH(QuantizedS8, QuantizedS32) DISPATCH(QuantizedS8, Float32) DISPATCH(Quantized8Asymm, QuantizedS32) DISPATCH(Quantized4Asymm, QuantizedS32) DISPATCH_RAW(QuantizedS8, QuantizedS32, QuantizedS32, FLOAT32, (convolution::forward_bias)) #if !MEGDNN_DISABLE_FLOAT16 DISPATCH(Float16, Float16) DISPATCH_RAW(Float16, Float16, Float16, FLOAT32, (convolution::forward_bias)) #endif else { megdnn_throw(ssprintf( "unsupported naive ConvBias(%s, %s, %s, %s) -> %s", src.layout.dtype.name(), filter.layout.dtype.name(), bias.layout.dtype.name(), z.layout.dtype.name(), dst.layout.dtype.name())); } #undef DISPATCH #undef DISPATCH_RAW MEGDNN_DISPATCH_CPU_KERN_OPR(handle_z_inp_and_activation_naive( param().nonlineMode, sfb, z, dst, workspace_ptr)); } MIDOUT_END(); } std::vector ConvBiasForwardImpl::get_all_algorithms(const TensorLayout&, const TensorLayout&, const TensorLayout&, const TensorLayout&, const TensorLayout&) { return {static_cast(handle())->default_conv_bias_fwd_algo()}; } ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic( const TensorLayout& /* src */, const TensorLayout& /* filter */, const TensorLayout& /* bias */, const TensorLayout& /* z */, const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */, bool reproducible) { auto algo = static_cast(handle())->default_conv_bias_fwd_algo(); if (reproducible) { megdnn_assert(algo->is_reproducible(), "require reproducible algorithm, but heuristic " "algorithm(%s) is not " "reproducible", algo->name()); } return algo; } const char* ConvBiasForwardImpl::get_algorithm_set_name() const { return "DEFAULT"; } } // namespace naive } // namespace megdnn // vim: syntax=cpp.doxygen