/** * \file src/opr/impl/rand.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/opr/rand.h" #include "megbrain/opr/utility.h" #include "megbrain/graph/grad_impl.h" #include "./internal/megdnn_opr_wrapper.inl" using namespace mgb; using namespace opr; using namespace intl; namespace { template struct RNGName; template<> struct RNGName { static constexpr const char* name = "uniform_rng"; }; template<> struct RNGName { static constexpr const char* name = "gaussian_rng"; }; } // anonymous namespace RNGOprBase::RNGOprBase(const OperatorNodeBaseCtorParam &opr, VarNode *shape): Super(opr) { add_input({shape}); add_output(None)->dtype(dtype::Float32()); cg::add_workspace_output(this); // disable dedup add_equivalence_component>(this); } RNGOprBase::~RNGOprBase() { } cg::OperatorNodeBase::NodeProp* RNGOprBase::do_make_node_prop() const { auto prop = Super::do_make_node_prop(); prop->add_flag(NodeProp::Flag::IMPURE_FUNC); prop->reset_dep_type(input(), {NodeProp::DepType::HOST_VALUE}); return prop; } void RNGOprBase::ensure_megdnn_opr() { if (!m_megdnn_opr || m_megdnn_opr.comp_node() != comp_node()) { m_megdnn_opr = create_megdnn_opr(); } } void RNGOprBase::init_output_static_infer_desc() { using namespace cg::static_infer; auto &&mgr = owner_graph()->static_infer_manager(); auto infer_out = [](TensorShape &dest, const InpVal &inp) { cg::copy_tensor_value_to_shape(dest, inp.val.at(0).value()); return true; }; auto infer_wk = [this](TensorShape &dest, const InpVal &inp) { ensure_megdnn_opr(); dest.ndim = 1; dest.shape[0] = m_megdnn_opr->get_workspace_in_bytes( {inp.val.at(0).shape(), output(0)->dtype()}); return true; }; mgr.register_shape_infer(output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_out}); mgr.register_shape_infer(output(1), {SourceType::DEP, {{output(0), DepType::SHAPE}}, infer_wk}); } void RNGOprBase::scn_do_execute() { m_megdnn_opr->exec( output(0)->dev_tensor().as_megdnn(), get_megdnn_workspace_from_var(output(1))); } template RNGOpr::RNGOpr(VarNode *shape, const Param ¶m, const OperatorNodeConfig &config): Super({shape->owner_graph(), config, RNGName::name, {shape}}, shape), m_param(param) { } template SymbolVar RNGOpr::make(SymbolVar shape, const Param ¶m, const OperatorNodeConfig &config) { return shape.insert_single_output_opr(shape.node(), param, config); } template UniqPtrWithCN RNGOpr::create_megdnn_opr() { auto opr = intl::create_megdnn_opr(comp_node()); opr->param() = param(); return opr; } #define IMPL(_cls) \ template class RNGOpr<::megdnn::_cls>; \ MGB_IMPL_OPR_GRAD(_cls) { \ MGB_MARK_USED_VAR(out_grad); \ return InvalidGrad::make(opr, wrt_idx); \ } \ namespace mgb { namespace opr { namespace intl { IMPL(GaussianRNG); IMPL(UniformRNG); } } } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}