#include "megbrain/opr/dnn/convolution.h" #include "../algo_chooser.h" #include "../blob_manager_impl.h" #include "../dnn_op_helper.h" #include "../op_trait.h" #include "megbrain/imperative/ops/autogen.h" #include "megbrain/opr/internal/megdnn_opr_wrapper.h" namespace mgb { namespace imperative { namespace { size_t infer_conv_shape(size_t inp, size_t flt, size_t stride, size_t pad) { mgb_assert(inp + 2 * pad >= flt, "input=%zu padding=%zu filter=%zu", inp, pad, flt); return (inp + 2 * pad - flt) / stride + 1; } namespace convolution { std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { auto* node = &node_->cast_final_safe(); return Convolution::make(node->param(), node->execution_policy()); } auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); OperatorNodeConfig config{conv.make_name()}; return opr::Convolution::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } TensorLayout do_shape_infer( const OpDef& def, size_t src_ndim, TensorLayout src, TensorLayout filter) { auto&& conv = static_cast(def); using Param = ::megdnn::param::Convolution; auto img_ndim = src_ndim - 2; mgb_assert( img_ndim == 2, "only 2D convolution is supported, and input should be 4-dim; " "got input dim = %zu", src_ndim); size_t group = 1; size_t flt_start, flt_spatial_start, ocpg_pos, icpg_pos; if (conv.sparse == Param::Sparse::DENSE) { mgb_assert( filter.ndim == img_ndim + 2 || filter.ndim == img_ndim + 4, "bad filter ndim for dense convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); group = 1; flt_start = 0; } else { // Param::Sparse::GROUP mgb_assert( filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5, "bad filter ndim for group convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); // grp, oc, ic, dims[] group = filter[0]; flt_start = 1; } uint32_t ic_block_size = 1, oc_block_size = 1; size_t src_or_dst_c_pos = 0; size_t src_or_dst_spatial_start = 0; if (conv.format == Param::Format::NCHW) { // filter should be (oc, ic, fh, fw) flt_spatial_start = 2; ocpg_pos = 0; icpg_pos = 1; src_or_dst_c_pos = 1; src_or_dst_spatial_start = 2; } else { // Param::Format::NHWC // filter should be (oc, fh, fw, ic) flt_spatial_start = 1; ocpg_pos = 0; icpg_pos = 3; src_or_dst_c_pos = 3; src_or_dst_spatial_start = 1; } size_t ocpg = filter[flt_start + ocpg_pos] * oc_block_size; size_t icpg = filter[flt_start + icpg_pos] * ic_block_size; uint32_t dilation[2], dilated_spatial[2], stride[2], padding[2]; dilation[0] = conv.dilate_h; dilation[1] = conv.dilate_w; stride[0] = conv.stride_h; stride[1] = conv.stride_w; padding[0] = conv.pad_h; padding[1] = conv.pad_w; for (size_t i = 0; i < img_ndim; ++i) { mgb_assert( dilation[i] > 0, "invalid dilation on spatial dim %zu: %u", i, dilation[i]); dilated_spatial[i] = (filter[i + flt_start + flt_spatial_start] - 1) * dilation[i] + 1; } mgb_assert( icpg * group == src[src_or_dst_c_pos], "group conv invalid: input channel of Conv expect %zu, but got %zu\n" "hint: weight may be changed by mistake\n", icpg * group, src[src_or_dst_c_pos]); TensorLayout dst{src.dtype}; dst.ndim = src_ndim; dst[0] = src[0]; dst[src_or_dst_c_pos] = ocpg * group; for (size_t i = 0; i < img_ndim; ++i) { dst[i + src_or_dst_spatial_start] = infer_conv_shape( src[i + src_or_dst_spatial_start], dilated_spatial[i], stride[i], padding[i]); } dst.init_contiguous_stride(); return dst; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { SmallVector dests(1); auto&& desc = dests[0]; desc.comp_node = inputs[0].comp_node; TensorLayout src = inputs[0].layout; TensorLayout filter = inputs[1].layout; size_t src_ndim = src.ndim; if (src_ndim == 0 || filter.ndim == 0) { desc.layout = TensorLayout{{}, src.dtype}; return {dests, false}; } desc.layout = do_shape_infer(def, src_ndim, src, filter); return {dests, true}; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { // create megdnn opr auto&& conv = static_cast(def); CompNode cn = inputs[0]->comp_node(); TensorLayout out_layout = output_descs[0].layout; if (!validated) out_layout = do_shape_infer( def, inputs[0]->layout().ndim, inputs[0]->layout(), inputs[1]->layout()); using TensorND = megdnn::TensorND; SmallVector inp_tensornds(inputs.size() + 2); TensorLayoutArray inp_shapes(inputs.size()), oup_shapes(output_descs.size()); for (unsigned i = 0; i < inputs.size(); ++i) { inp_tensornds[i] = inputs[i]->dnn_tensor(); inp_shapes[i] = inputs[i]->layout(); } oup_shapes[0] = out_layout; DnnOprCaller dnn_opr(cn); auto&& param = dnn_opr.op->param(); param.pad_h = conv.pad_h; param.pad_w = conv.pad_w; param.stride_h = conv.stride_h; param.stride_w = conv.stride_w; param.dilate_h = conv.dilate_h; param.dilate_w = conv.dilate_w; param.sparse = conv.sparse; param.compute_mode = conv.compute_mode; param.format = conv.format; // shape infer TensorLayout empty_shp({0}, inputs[0]->dtype()); empty_shp.ndim = 0; auto empty_bias = Tensor::make(empty_shp, cn); inp_tensornds[2] = empty_bias->dnn_tensor(); inp_tensornds[3] = empty_bias->dnn_tensor(); size_t sz = setup_algo( {inp_shapes[0], inp_shapes[1], empty_shp, empty_shp, oup_shapes[0]}, dnn_opr.op.get(), 0, false, false, cn, conv.policy(), false, &inp_tensornds); // alloc memory auto out = Tensor::make(out_layout, cn); auto dnn_wk = dnn_opr.create_workspace(sz); // exeucte dnn_opr.op->exec( inp_tensornds[0], inp_tensornds[1], inp_tensornds[2], inp_tensornds[3], out->dnn_tensor(), nullptr, dnn_wk); return {out}; } OP_TRAIT_REG(Convolution, Convolution, opr::Convolution) .make_from_op_node(make_from_op_node) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_physical_tensor(apply_on_physical_tensor) .fallback(); } // namespace convolution } // namespace namespace { namespace conv_bias { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); cg::OperatorNodeConfig config{conv.dtype}; config.name(conv.make_name()); if (inputs.size() == 2) { return opr::ConvBias::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } else if (inputs.size() == 3) { return opr::ConvBias::make( inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config); } else if (inputs.size() == 4) { return opr::ConvBias::make( inputs[0], inputs[1], inputs[2], inputs[3], conv.param(), conv.policy(), config); } mgb_assert(0); } OP_TRAIT_REG(ConvBias, ConvBias).apply_on_var_node(apply_on_var_node).fallback(); } // namespace conv_bias } // namespace namespace { namespace convolution_backward_data { auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); OperatorNodeConfig config{conv.make_name()}; DType output_dtype = conv.dtype; if (output_dtype.valid()) { config.output_dtype(output_dtype); } if (inputs.size() == 2) { return opr::ConvolutionBackwardData::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } else { mgb_assert(inputs.size() == 3); return opr::ConvolutionBackwardData::make( inputs[0], inputs[1], inputs[2], conv.param(), conv.policy(), config); } } TensorLayout convbwd_do_shape_infer( const OpDef& def, size_t diff_ndim, TensorLayout filter, TensorLayout diff, CompNode cn) { auto&& bwd_conv = static_cast(def); DnnOprCaller caller(cn); auto&& dnn_opr = caller.op; using Param = ::megdnn::param::Convolution; // using Param1 = ::megdnn::param::ConvolutionBackwardData; auto img_ndim = diff_ndim - 2; mgb_assert( img_ndim == 2, "only 2D convolution is supported, and input should be 4-dim; " "got input dim = %zu", diff_ndim); size_t group = 1; size_t flt_start, flt_spatial_start, ocpg_pos, icpg_pos; if (bwd_conv.sparse == Param::Sparse::DENSE) { mgb_assert( filter.ndim == img_ndim + 2 || filter.ndim == img_ndim + 4, "bad filter ndim for dense convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); group = 1; flt_start = 0; } else { // Param::Sparse::GROUP mgb_assert( filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5, "bad filter ndim for group convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); // grp, oc, ic, dims[] group = filter[0]; flt_start = 1; } uint32_t ic_block_size = 1, oc_block_size = 1; size_t src_or_dst_c_pos = 0; size_t src_or_dst_spatial_start = 0; if (bwd_conv.format == Param::Format::NCHW) { // filter should be (oc, ic, fh, fw) flt_spatial_start = 2; ocpg_pos = 0; icpg_pos = 1; src_or_dst_c_pos = 1; src_or_dst_spatial_start = 2; } else { // Param::Format::NHWC // filter should be (oc, fh, fw, ic) flt_spatial_start = 1; ocpg_pos = 0; icpg_pos = 3; src_or_dst_c_pos = 3; src_or_dst_spatial_start = 1; } size_t ocpg = filter[flt_start + ocpg_pos] * oc_block_size; size_t icpg = filter[flt_start + icpg_pos] * ic_block_size; uint32_t dilation[2], dilated_spatial[2], stride[2], padding[2]; dilation[0] = bwd_conv.dilate_h; dilation[1] = bwd_conv.dilate_w; stride[0] = bwd_conv.stride_h; stride[1] = bwd_conv.stride_w; padding[0] = bwd_conv.pad_h; padding[1] = bwd_conv.pad_w; for (size_t i = 0; i < img_ndim; ++i) { mgb_assert( dilation[i] > 0, "invalid dilation on spatial dim %zu: %u", i, dilation[i]); dilated_spatial[i] = (filter[i + flt_start + flt_spatial_start] - 1) * dilation[i] + 1; } mgb_assert( ocpg * group == diff[src_or_dst_c_pos], "group conv invalid: input channel of Conv expect %zu, but got %zu\n" "hint: weight may be changed by mistake\n", ocpg * group, diff[src_or_dst_c_pos]); auto deduce = [](size_t out, size_t filter, size_t stride, size_t pad) { auto i = (out - 1) * stride + filter; mgb_assert(i > pad * 2); return i - pad * 2; }; DType dst_dtype = bwd_conv.dtype; dnn_opr->deduce_dtype(filter.dtype, diff.dtype, dst_dtype); TensorLayout dst{dst_dtype}; dst.ndim = diff_ndim; dst[0] = diff[0]; dst[src_or_dst_c_pos] = icpg * group; for (size_t i = 0; i < img_ndim; ++i) { dst[i + src_or_dst_spatial_start] = deduce(diff[i + src_or_dst_spatial_start], dilated_spatial[i], stride[i], padding[i]); } dst.init_contiguous_stride(); return dst; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { SmallVector dests(1); auto&& desc = dests[0]; desc.comp_node = inputs[0].comp_node; TensorLayout filter = inputs[0].layout; TensorLayout diff = inputs[1].layout; size_t diff_ndim = diff.ndim; if (diff_ndim == 0 || filter.ndim == 0) { desc.layout = TensorLayout{{}, diff.dtype}; return {dests, false}; } desc.layout = convbwd_do_shape_infer(def, diff_ndim, filter, diff, inputs[0].comp_node); return {dests, true}; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { // create megdnn opr auto&& convbwd = static_cast(def); CompNode cn = inputs[0]->comp_node(); TensorLayout out_layout = output_descs[0].layout; if (!validated) out_layout = convbwd_do_shape_infer( def, inputs[1]->layout().ndim, inputs[0]->layout(), inputs[1]->layout(), cn); auto out = Tensor::make(out_layout, cn); using TensorND = megdnn::TensorND; SmallVector inp_tensornds(inputs.size()); TensorLayoutArray inp_shapes(inputs.size()), oup_shapes(output_descs.size()); for (unsigned i = 0; i < inputs.size(); ++i) { inp_tensornds[i] = inputs[i]->dnn_tensor(); inp_shapes[i] = inputs[i]->layout(); } oup_shapes[0] = out_layout; DnnOprCaller dnn_opr(cn); dnn_opr.op->param() = convbwd.param(); size_t sz = setup_algo( {inp_shapes[0], inp_shapes[1], oup_shapes[0]}, dnn_opr.op.get(), 0, false, false, cn, convbwd.policy(), false, &inp_tensornds); auto dnn_wk = dnn_opr.create_workspace(sz); // exeucte dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); return {out}; } OP_TRAIT_REG(ConvolutionBackwardData, ConvolutionBackwardData) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_physical_tensor(apply_on_physical_tensor) .fallback(); } // namespace convolution_backward_data } // namespace namespace { namespace convolution3d { std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { auto* node = &node_->cast_final_safe(); return Convolution3D::make(node->param(), node->execution_policy()); } auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); return opr::Convolution3D::make(inputs[0], inputs[1], conv.param(), conv.policy()); } TensorLayout do_shape_infer( const OpDef& def, size_t src_ndim, TensorLayout src, TensorLayout filter) { auto&& conv = static_cast(def); using Param = ::megdnn::param::Convolution3D; auto img_ndim = src_ndim - 2; mgb_assert( img_ndim == 3, "only 3D convolution is supported, and input should be 5-dim; " "got input dim = %zu", src_ndim); size_t group = 1; size_t flt_start, flt_spatial_start, ocpg_pos, icpg_pos; if (conv.sparse == Param::Sparse::DENSE) { mgb_assert( filter.ndim == img_ndim + 2 || filter.ndim == img_ndim + 4, "bad filter ndim for dense convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); group = 1; flt_start = 0; } else { // Param::Sparse::GROUP mgb_assert( filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5, "bad filter ndim for group convolution: " "spatial_ndim=%zu filter_ndim=%zu", img_ndim, filter.ndim); // grp, oc, ic, dims[] group = filter[0]; flt_start = 1; } uint32_t ic_block_size = 1, oc_block_size = 1; size_t src_or_dst_c_pos = 0; size_t src_or_dst_spatial_start = 0; if (conv.format == Param::Format::NCDHW) { // filter should be (oc, ic, fd, fh, fw) flt_spatial_start = 2; ocpg_pos = 0; icpg_pos = 1; src_or_dst_c_pos = 1; src_or_dst_spatial_start = 2; } else { // Param::Format::NDHWC // filter should be (oc, fd, fh, fw, ic) flt_spatial_start = 1; ocpg_pos = 0; icpg_pos = 4; src_or_dst_c_pos = 4; src_or_dst_spatial_start = 1; } size_t ocpg = filter[flt_start + ocpg_pos] * oc_block_size; size_t icpg = filter[flt_start + icpg_pos] * ic_block_size; uint32_t dilation[3], dilated_spatial[3], stride[3], padding[3]; dilation[0] = conv.dilate_d; dilation[1] = conv.dilate_h; dilation[2] = conv.dilate_w; stride[0] = conv.stride_d; stride[1] = conv.stride_h; stride[2] = conv.stride_w; padding[0] = conv.pad_d; padding[1] = conv.pad_h; padding[2] = conv.pad_w; for (size_t i = 0; i < img_ndim; ++i) { mgb_assert( dilation[i] > 0, "invalid dilation on spatial dim %zu: %u", i, dilation[i]); dilated_spatial[i] = (filter[i + flt_start + flt_spatial_start] - 1) * dilation[i] + 1; } mgb_assert( icpg * group == src[src_or_dst_c_pos], "group conv invalid: input channel of Conv expect %zu, but got %zu\n" "hint: weight may be changed by mistake\n", icpg * group, src[src_or_dst_c_pos]); TensorLayout dst{src.dtype}; dst.ndim = src_ndim; dst[0] = src[0]; dst[src_or_dst_c_pos] = ocpg * group; for (size_t i = 0; i < img_ndim; ++i) { dst[i + src_or_dst_spatial_start] = infer_conv_shape( src[i + src_or_dst_spatial_start], dilated_spatial[i], stride[i], padding[i]); } dst.init_contiguous_stride(); return dst; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { SmallVector dests(1); auto&& desc = dests[0]; desc.comp_node = inputs[0].comp_node; TensorLayout src = inputs[0].layout; TensorLayout filter = inputs[1].layout; size_t src_ndim = src.ndim; if (src_ndim == 0 || filter.ndim == 0) { desc.layout = TensorLayout{{}, src.dtype}; return {dests, false}; } desc.layout = do_shape_infer(def, src_ndim, src, filter); return {dests, true}; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { // create megdnn opr auto&& conv = static_cast(def); TensorLayout out_layout = output_descs[0].layout; if (!validated) out_layout = do_shape_infer( def, inputs[0]->layout().ndim, inputs[0]->layout(), inputs[1]->layout()); using TensorND = megdnn::TensorND; CompNode cn = inputs[0]->comp_node(); SmallVector inp_tensornds(inputs.size()); TensorLayoutArray inp_shapes(inputs.size()), oup_shapes(output_descs.size()); for (unsigned i = 0; i < inputs.size(); ++i) { inp_tensornds[i] = inputs[i]->dnn_tensor(); inp_shapes[i] = inputs[i]->layout(); } oup_shapes[0] = out_layout; DnnOprCaller dnn_opr(cn); dnn_opr.op->param() = conv.param(); // shape infer size_t sz = setup_algo( {inp_shapes[0], inp_shapes[1], oup_shapes[0]}, dnn_opr.op.get(), 0, false, false, cn, conv.policy(), false, &inp_tensornds); // alloc memory auto out = Tensor::make(out_layout, cn); auto dnn_wk = dnn_opr.create_workspace(sz); // exeucte dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out->dnn_tensor(), dnn_wk); return {out}; } OP_TRAIT_REG(Convolution3D, Convolution3D, opr::Convolution3D) .make_from_op_node(make_from_op_node) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_physical_tensor(apply_on_physical_tensor) .fallback(); } // namespace convolution3d } // namespace namespace { namespace convolution3d_backward_data { std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { mgb_assert( inputs.size() == 2, "inputs num of conv_transpose3d should be 2 but you give %zu", inputs.size()); auto&& op_def = def.cast_final_safe(); auto&& weight = inputs[0]; auto&& diff = inputs[1]; auto& cn = weight.comp_node; if (weight.layout.ndim == 0 || diff.layout.ndim == 0) { return {{{TensorLayout{weight.layout.dtype}, cn, {}}}, false}; } TensorLayout oup_layout; megdnn::Convolution3DBackwardData::deduce_layout_impl( weight.layout, diff.layout, op_def.param(), oup_layout); return {{{oup_layout, cn, {}}}, true}; } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs, SmallVector& output_descs, const bool& validated) { auto&& op_def = def.cast_final_safe(); auto cn = inputs[0]->comp_node(); auto&& wlayout = inputs[0]->layout(); auto&& dlayout = inputs[1]->layout(); DnnOprCaller caller(cn); auto&& dnn_opr = caller.op; dnn_opr->param() = op_def.param(); TensorLayout& oup_layout = output_descs[0].layout; if (!validated) { megdnn::Convolution3DBackwardData::deduce_layout_impl( wlayout, dlayout, op_def.param(), oup_layout); } auto oup = Tensor::make(oup_layout, cn); SmallVector inp_tensornds(inputs.size()); inp_tensornds[0] = inputs[0]->dnn_tensor(); inp_tensornds[1] = inputs[1]->dnn_tensor(); size_t wk_size = setup_algo( {wlayout, dlayout, oup_layout}, dnn_opr.get(), 0, false, false, cn, op_def.policy(), false, &inp_tensornds); auto dnn_wk = caller.create_workspace(wk_size); dnn_opr->exec(inp_tensornds[0], inp_tensornds[1], oup->dnn_tensor(), dnn_wk); return {oup}; } auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { auto&& conv = static_cast(def); OperatorNodeConfig config{conv.make_name()}; mgb_assert(inputs.size() == 2); return opr::Convolution3DBackwardData::make( inputs[0], inputs[1], conv.param(), conv.policy(), config); } OP_TRAIT_REG(Convolution3DBackwardData, Convolution3DBackwardData) .apply_on_var_node(apply_on_var_node) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_physical_tensor(apply_on_physical_tensor) .fallback(); } // namespace convolution3d_backward_data } // namespace } // namespace imperative } // namespace mgb