/** * \file dnn/src/arm_common/pooling/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "src/arm_common/pooling/opr_impl.h" #include "src/arm_common/pooling/algo.h" #include "src/common/metahelper.h" using namespace megdnn; using namespace arm_common; class PoolingImpl::AlgoPack : NonCopyableObj { AlgoFilterxModexStride1 algo_filterx_modex_stride1; AlgoFilter2ModexStride2 algo_filter2_modex_stride2; AlgoFilter3MaxStride2 algo_filter3_max_stride2; AlgoFilter3AverageStride2 algo_filter3_average_stride2; AlgoFilter4MaxStride2 algo_filter4_max_stride2; AlgoFilter5MaxStride2 algo_filter5_max_stride2; AlgoInt8Filter2MaxStride2 algo_int8_filter2_max_stride2; AlgoInt8Filter3MaxStride2 algo_int8_filter3_max_stride2; AlgoFilter2ModexStridexNCHW44 algo_filter2_modex_stridex_nchw4; AlgoFilter3ModexStridexNCHW44 algo_filter3_modex_stridex_nchw4; AlgoFilter4ModexStridexNCHW44 algo_filter4_modex_stridex_nchw4; AlgoFilter5ModexStridexNCHW44 algo_filter5_modex_stridex_nchw4; public: AlgoPack() { all_algos.emplace_back(&algo_filterx_modex_stride1); all_algos.emplace_back(&algo_filter2_modex_stride2); all_algos.emplace_back(&algo_filter3_max_stride2); all_algos.emplace_back(&algo_filter3_average_stride2); all_algos.emplace_back(&algo_filter4_max_stride2); all_algos.emplace_back(&algo_filter5_max_stride2); all_algos.emplace_back(&algo_int8_filter2_max_stride2); all_algos.emplace_back(&algo_int8_filter3_max_stride2); all_algos.emplace_back(&algo_filter3_modex_stridex_nchw4); all_algos.emplace_back(&algo_filter2_modex_stridex_nchw4); all_algos.emplace_back(&algo_filter4_modex_stridex_nchw4); all_algos.emplace_back(&algo_filter5_modex_stridex_nchw4); } SmallVector all_algos; }; PoolingImpl::PoolingKernSizeParam PoolingImpl::make_pooling_kern_szie_param( fallback::PoolingImpl* opr, const TensorLayout& src, const TensorLayout& dst) { auto safe_u32 = [](size_t v) -> uint32_t { megdnn_assert(v <= std::numeric_limits::max(), "value too large: %zu", v); return v; }; return {safe_u32(src.shape[0]), safe_u32(src.shape[1]), {{safe_u32(src.shape[2]), safe_u32(src.shape[3])}}, {{safe_u32(dst.shape[2]), safe_u32(dst.shape[3])}}, {{safe_u32(opr->param().pad_h), safe_u32(opr->param().pad_w)}}, {{safe_u32(opr->param().window_h), safe_u32(opr->param().window_w)}}, {{safe_u32(opr->param().stride_h), safe_u32(opr->param().stride_w)}}, src.dtype, dst.dtype, opr->handle(), opr->param().format, opr->param().mode}; }; PoolingImpl::PoolingKernParam PoolingImpl::make_pooling_kern_param( fallback::PoolingImpl* opr, _megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { PoolingKernParam ret; static_cast(ret) = make_pooling_kern_szie_param(opr, src.layout, dst.layout); ret.src_ptr = src.raw_ptr; ret.dst_ptr = dst.raw_ptr; ret.workspace_ptr = workspace.raw_ptr; ret.workspace_size = workspace.size; return ret; }; size_t PoolingImpl::get_workspace_in_bytes(const TensorLayout& src, const TensorLayout& dst) { bool find_algo = false; static AlgoPack m_algo_pack; auto param = make_pooling_kern_szie_param(this, src, dst); for (auto& m_algo : m_algo_pack.all_algos) { if (m_algo->usable(param)) { find_algo = true; break; } } size_t arm_common_workspace = 0; //! When multi-thread, every thread has its own workspace size_t nr_threads = static_cast(handle()) ->megcore_dispatcher() ->nr_threads(); if ((param.src_type.category() == DTypeCategory::FLOAT || param.src_type == dtype::Int8{} || param.src_type.enumv() == DTypeEnum::QuantizedS8 || param.src_type.enumv() == DTypeEnum::Quantized8Asymm) && param.filter[0] == param.filter[1] && (param.filter[0] == 3 || param.filter[0] == 5) && param.format == Param::Format::NCHW && (param.mode == Mode::MAX || (param.mode == Mode::AVERAGE && param.filter[0] == 3)) && param.stride[0] == 2 && param.stride[1] == 2 && param.isz[0] >= 2 && param.isz[1] >= 2) { WorkspaceBundle ws = get_bundle(param); arm_common_workspace = ws.total_size_in_bytes() * nr_threads; } if ((param.src_type.enumv() == DTypeEnum::QuantizedS8) && (param.format == param::Pooling::Format::NCHW44)) { WorkspaceBundle ws = get_bundle_nchw44(param); arm_common_workspace = ws.total_size_in_bytes() * nr_threads; } if (find_algo) { return arm_common_workspace; } else { auto fallback_worksapce = fallback::PoolingImpl::get_workspace_in_bytes(src, dst); return fallback_worksapce; } } void PoolingImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { check_exec(src.layout, dst.layout, workspace.size); auto param = make_pooling_kern_param(this, src, dst, workspace); static AlgoPack m_algo_pack; for (auto& m_algo : m_algo_pack.all_algos) { if (m_algo->usable(param)) { m_algo->exec(param); return; } } fallback::PoolingImpl::exec(src, dst, workspace); } // vim: syntax=cpp.doxygen