# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F import megengine.module as M from megengine import Parameter, Tensor, amp from megengine.core._config import set_auto_format_convert class MyModule(M.Module): class InnerModule(M.Module): def __init__(self): super().__init__() self.bn = M.BatchNorm2d(4) def forward(self, x): return self.bn(x) def __init__(self): super().__init__() self.i = self.InnerModule() self.conv = M.Conv2d(4, 4, 4, groups=2) self.bn = M.BatchNorm2d(4) self.param = Parameter(np.ones((1, 3, 1, 1), dtype=np.float32)) self.buff = Tensor(np.ones((1, 3, 1, 1), dtype=np.float32)) def forward(self, x): x = self.i(x) x = self.bn(x) return x @pytest.mark.parametrize("is_inplace", [False, True]) def test_convert_module(is_inplace): m = MyModule() expected_shape = { "i.bn.weight": (1, 1, 1, 4), "i.bn.bias": (1, 1, 1, 4), "i.bn.running_mean": (1, 1, 1, 4), "i.bn.running_var": (1, 1, 1, 4), "conv.weight": (2, 2, 4, 4, 2), "conv.bias": (1, 1, 1, 4), "bn.weight": (1, 1, 1, 4), "bn.bias": (1, 1, 1, 4), "bn.running_mean": (1, 1, 1, 4), "bn.running_var": (1, 1, 1, 4), "param": (1, 1, 1, 3), "buff": (1, 1, 1, 3), } m = amp.convert_module_format(m, is_inplace) for name, param in m.named_tensors(): assert param.format == "nhwc" set_auto_format_convert(False) assert param.shape == expected_shape[name], name set_auto_format_convert(True)