/** * \file dnn/src/cuda/batched_matrix_mul/algo.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #pragma once #include #include "megdnn/dtype.h" #include "megdnn/oprs.h" #include "src/common/utils.h" #include "src/cuda/batched_matrix_mul/opr_impl.h" #include "src/cuda/matrix_mul/cublasLt_wrapper.h" #include "src/common/metahelper.h" #if CUDA_VERSION >= 10010 #include #endif namespace megdnn { namespace cuda { class BatchedMatrixMulForwardImpl::AlgoBase : public Algorithm { protected: ~AlgoBase() = default; public: enum class AlgoType : uint32_t { CUDA_BRUTE_FORCE, CUDA_CUBLAS, CUDA_CUBLASLT, CUDA_INT8X8X32, }; using Mapper = std::unordered_map; AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } struct SizeArgs { BatchedMatrixMulForwardImpl* opr; TensorLayout layout_a, layout_b, layout_c; std::string to_string() const; SizeArgs(BatchedMatrixMulForwardImpl* o, const TensorLayout& A, const TensorLayout& B, const TensorLayout& C); bool can_be_treated_as_int8x8x32() const { return layout_a.dtype.enumv() == layout_b.dtype.enumv() && (layout_a.dtype.enumv() == DTypeEnum::Int8 || layout_a.dtype.enumv() == DTypeEnum::QuantizedS8) && (layout_c.dtype.enumv() == DTypeEnum::Int32 || layout_c.dtype.enumv() == DTypeEnum::QuantizedS32) && opr->param().format == param::MatrixMul::Format::DEFAULT; } }; struct ExecArgs : public SizeArgs { TensorND tensor_a, tensor_b, tensor_c; Workspace workspace; ExecArgs(BatchedMatrixMulForwardImpl* o, _megdnn_tensor_in A, _megdnn_tensor_in B, _megdnn_tensor_in C, _megdnn_workspace workspace); }; virtual bool is_available(const SizeArgs& args) const = 0; virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; virtual void exec(const ExecArgs& args) const = 0; virtual const char* name() const = 0; bool is_available_wk(const SizeArgs& args, size_t limit) { return is_available(args) && get_workspace_in_bytes(args) <= limit; } bool is_available_reproducible( const SizeArgs& args, bool reproducible = true, size_t limit = std::numeric_limits::max()) { return (!reproducible || is_reproducible()) && is_available_wk(args, limit); } AlgoBase& check_workspace(const SizeArgs& args, const Workspace& workspace) { auto req = get_workspace_in_bytes(args); megdnn_assert(req <= workspace.size, "batched matrix mul fwd algo %s: required workspace %zu " "bytes, got %zu", name(), req, workspace.size); return *this; } }; class BatchedMatrixMulForwardImpl::AlgoBruteForce final : public BatchedMatrixMulForwardImpl::AlgoBase { using Param = MatrixMulForward::Param; private: WorkspaceBundle get_workspace_bundle(); public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /*args*/) const override; void exec(const ExecArgs& args) const final; bool is_reproducible() const override { return true; } const char* name() const override { return "BRUTE_FORCE"; } MEGDNN_DECL_ALGO_TYPE(CUDA_BRUTE_FORCE) std::vector get_subopr_list( const TensorLayoutArray& layouts, const OperatorBase* opr) const override; }; class BatchedMatrixMulForwardImpl::AlgoCublas final : public BatchedMatrixMulForwardImpl::AlgoBase { public: AlgoCublas() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /*args*/) const override; void exec(const ExecArgs& args) const final; bool is_reproducible() const override { return true; } const char* name() const override { return "CUBLAS"; } MEGDNN_DECL_ALGO_TYPE(CUDA_CUBLAS) }; #if CUDA_VERSION >= 10010 class BatchedMatrixMulForwardImpl::AlgoCublasLt final : public AlgoBase { public: AlgoCublasLt() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /*args*/) const override; void exec(const ExecArgs& args) const final; bool is_reproducible() const override { return true; } const char* name() const override { return "CUBLAS_LT"; } MEGDNN_DECL_ALGO_TYPE(CUDA_CUBLASLT) }; #endif class BatchedMatrixMulForwardImpl::AlgoInt8x8x32 final : public BatchedMatrixMulForwardImpl::AlgoBase { public: AlgoInt8x8x32() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /*args*/) const override; void exec(const ExecArgs& args) const final; bool is_reproducible() const override { return true; } const char* name() const override { return "INT8x8x32"; } MEGDNN_DECL_ALGO_TYPE(CUDA_INT8X8X32) }; class BatchedMatrixMulForwardImpl::AlgoPack : NonCopyableObj { private: AlgoBase::Mapper m_all_algos_map; MatrixMulForwardImpl::AlgoPack mm_pack; public: AlgoPack(); AlgoCublas cublas; #if CUDA_VERSION >= 10010 AlgoCublasLt cublasLt; #endif AlgoInt8x8x32 int8x8x32; std::vector all_algos; AlgoBruteForce brute_force; const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } }; } // namespace cuda } // namespace megdnn